www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Mult. Gruppe eines Körpers
Mult. Gruppe eines Körpers < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mult. Gruppe eines Körpers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 Fr 08.07.2005
Autor: Hanno

Hallo an alle!

Ich bin gestern beim Bearbeiten einer Aufgabe auf die Frage gestoßen, ob es unendlich viele Primzahlen $p$ gibt, für die das erzeugende/primitive Element der (wie wir wissen zyklischen) multiplikativen Gruppe des Körpers [mm] $\IZ_p$ [/mm] die 2 ist.

Zur Folge hätte dies, dass [mm] $2^x\equiv 1\pmod{p}$ [/mm] sofort [mm] $x\equiv 0\pmod{p-1}$ [/mm] implizierte, was für mich recht nützlich wäre.

Also: ist die Aussage überhaupt wahr? Kennt jemand einen (einfachen) Beweis?

Liebe Grüße,
Hanno

        
Bezug
Mult. Gruppe eines Körpers: Artinsche Vermutung
Status: (Antwort) fertig Status 
Datum: 10:54 Fr 08.07.2005
Autor: Stefan

Lieber Hanno!

Ich habe einen gar wunderbaren Beweis dafür entdeckt, doch...

Nein, lassen wir das. :-) Es ist und bleibt eine sehr bekannte unbewiesene Vermutung der Mathematik, die (allgemeiner) als Artinsche Vermutung bekannt ist, siehe etwa []hier auf Seite 118.

Aber du kannst ja gerne mal versuchen sie zu beweisen, schließlich versuchen hier im Forum zur Zeit auch Leute die Fermatsche Vermutung einfacher zu beweisen. ;-)

Wie lautet denn die Originalaufgabe? Die müsste man ja dann entsprechend auch anders lösen können..

Liebe Grüße
Stefan

Bezug
                
Bezug
Mult. Gruppe eines Körpers: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Fr 08.07.2005
Autor: Hanno

Hallo Stefan!

Es sei eine Folge [mm] $(a_n)$ [/mm] natürlicher Zahlen durch [mm] $a_0=k\in\IN$ [/mm] und [mm] $a_{n+1}=2a_n+1$ [/mm] gegeben. Man beweise, dass es unendlich viele Folgenglieder gibt, die nicht prim sind.

Bitte postet die Lösung nicht ins Forum, diese Aufgabe wurde in der letzten Ausgabe der Wurzel (Zeitschrift) gestellt - es ist zwar kein Wettbewerb o.Ä., dennoch sollte die Lösung bis zum Einsendeschluss nicht öffentlich genannt werden - finde ich.

Falls du dir etwas überlegt hast, können wir das aber gerne über PNs besprechen - wenn du magst, schicke ich dir dann mal meine LÖsung unter Voraussetzung der Artin'schen Vermutung!


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de