www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Multiplikation
Multiplikation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:23 Di 06.12.2011
Autor: mathemaus2010

Aufgabe
Sei
[mm] A_{1}= \pmat{ 1 \\ 2 \\ 3 } \in Q^{3x1} [/mm]  
[mm] A_{2}= [/mm] (1  1  -1) [mm] \in Q^{1x3} [/mm]
[mm] A_{3}= \pmat{ 0 & 4 \\ -2 & 1 \\ 0 & -1 } \in Q^{3x2} [/mm]  
[mm] A_{4}= \pmat{ 2 & 0 \\ 3 & 1 } \in F_{5}^{2x2} [/mm]  
[mm] A_{5}= [/mm] ( 1  -1 ) [mm] \in F_{5}^{1x2} [/mm]  
[mm] A_{6}= \pmat{ 0 & 4 \\ -2 & 1 \\ 0 & -1 } \in F_{5}^{3x2} [/mm]      
[mm] A_{7}= \pmat{ 1 \\ 2 \\ 3 } \in F_{5}^{3x1} [/mm]  
[mm] A_{8}= [/mm] ( 1  1  -1 ) [mm] \in Q^{1x3} [/mm]    
[mm] A_{9}= \pmat{ 1 & -1 & 2 \\ -1 & 0 & 1 \\ 0 & -1 & 0 } \in Q^{3x3} [/mm]

Bestimme für alle Paare i , j [mm] \in [/mm] {1,...,9}, für die dies möglich ist, [mm] A_{i} \* A_{j}. [/mm]

Ich habe diese Frage in keinem anderen Forum oder auf anderen Internetseiten gestellt.
Hallo,
ich habe die Lösung zu der Aufgabe und wollte mich nur erkundigen, ob das stimmt. Wäre nett, wenn sich das mal jemand anschauen könnte =)
Es gibt doch bloß folgende Möglichkeiten:
[mm] A_{1} \* A_{2}= \pmat{ 1 & -1 & -1 \\ 2 & 2 & -2 \\ 3 & 3 & -3 } \in Q^{3x3} [/mm]
[mm] A_{2} \* A_{9}= [/mm] ( 0 0 3 ) [mm] \in Q^{1x3} [/mm]
[mm] A_{1} \* A_{8}= \pmat{ 1 & 1 & -1 \\ 2 & 2 & -2 \\ 3 & 3 & -3 } \in Q^{3x3} [/mm]
[mm] A_{2} \* A_{3}= [/mm] ( -2 6 ) [mm] \in Q^{1x2} [/mm]
[mm] A_{8} \* A_{9}= [/mm] ( 0 0 3 ) [mm] \in Q^{1x3} [/mm]
[mm] A_{2} \* A_{1}= [/mm] 0 [mm] \in Q^{1x1} [/mm]
[mm] A_{8} \* A_{1}= [/mm] 0 [mm] \in Q^{1x1} [/mm]
[mm] A_{9} \* A_{1}= \pmat{ 5 \\ 2 \\ -2 } \in Q^{3x1} [/mm]
[mm] A_{8} \* A_{3}= [/mm] ( -2 6 ) [mm] \in Q^{1x2} [/mm]
[mm] A_{9} \* A_{3}= \pmat{ 2 & 1 \\ 0 & -5 \\ 2 & -1 } \in Q^{3x2} [/mm]
[mm] A_{5} \* A_{4}= [/mm] ( 1 -1 ) [mm] \in F_{5}^{1x2} [/mm]
[mm] A_{6} \* A_{4}= \pmat{ 2 & 4 \\ -1 & 1 \\ -3 & -1 } \in F_{5}^{3x2} [/mm]
[mm] A_{7} \* A_{5}= \pmat{ 1 & -1 \\ 2 & -2 \\ 3 & -3 } \in F_{5}^{3x3} [/mm]
[mm] A_{4} \* A_{4}= \pmat{ 4 & 0 \\ 4 & 1 } \in F_{5}^{2x2} [/mm]
[mm] A_{9} \* A_{9}= \pmat{ 0 & -1 & -3 \\ -1 & -1 & -2 \\ 1 & 0 & 1 } \in Q^{3x3} [/mm]

Alle Matrizen kommen ja aus 2 verschiedenen Körpern, aber man kann doch nicht eine Matrix aus dem einen Körper mit einer aus dem anderen Körper multiplizieren, oder?  Ich weiß, dass  [mm] A_{2} [/mm]  und [mm] A_{8} [/mm] die gleiche Matrix darstellen, aber dies ist auch so auf meinem Aufgabenblatt (wird bestimmt ein Fehler sein ). Vor allem würde ich noch gerne wissen, ob [mm] A_{4} \* A_{4} [/mm] stimmt, da ich doch mudolo 5 rechnen muss in diesem Körper, oder nicht? Danke für eure Hilfe.

lg Mathemaus =)


        
Bezug
Multiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 Di 06.12.2011
Autor: angela.h.b.

Hallo,

nachrechnen möchte ich das nicht.

Du hast recht damit, daß die Einträge in den Matrizen aus demselben Körper kommen müssen.

Wesentlich ist, daß man nur multiplizieren kann, wenn die Zeilenzahl der 1. Matrix mit der Spaltenzahl der 2.Matrix übereinstimmt. Das scheinst Du begriffen zu haben. [mm] (m\times r-Matrix)*(r\times n-Matrix)=(m\times [/mm] n-Matrix).
Stichprobenartig geguckt scheint Dir das auch klar zu sein.

Die Matrix [mm] A_4*A_4 [/mm] stimmt. Hier, wie auch bei dne anderen, deren Einträge aus [mm] F_5 [/mm] sind, mußt Du modulo 5 rechnen.

Zur Gleichheit von A2 und [mm] A_8: [/mm] die Einträge bei [mm] A_8 [/mm] sollten gewiß aus [mm] F_5 [/mm] sein.

Gruß v. Angela


Bezug
        
Bezug
Multiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mi 07.12.2011
Autor: fab42

Hallo Mathemaus,
Ich habe das eben auch mal durchgerechnet und habe dabei zwei Lösungen die sich von deinen unterscheiden.



> [mm]A_{5} \* A_{4}=[/mm] ( 1 -1 ) [mm]\in F_{5}^{1x2}[/mm]

hier habe ich:
[mm]A_{5} \* A_{4}=[/mm] ( -1 -1 ) [mm]\in F_{5}^{1x2}[/mm]



> [mm]A_{9} \* A_{9}= \pmat{ 0 & -1 & -3 \\ -1 & -1 & -2 \\ 1 & 0 & 1 } \in Q^{3x3}[/mm]

und hier:
[mm]A_{9} \* A_{9}= \pmat{ 2 & -3 & 1 \\ -1 & 0 & -2 \\ 1 & 0 & -1 } \in Q^{3x3}[/mm]

gruß


Bezug
                
Bezug
Multiplikation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Di 13.12.2011
Autor: mathemaus2010

Okay gut danke, dann rechne ich das nochmal nach =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de