www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Multiplikation 2 Matrizen
Multiplikation 2 Matrizen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation 2 Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Fr 22.04.2011
Autor: LeylaS

Hallo alle zusammen!

ich habe folgendes Problem:

die Aufgabe lautet:
Multiplizieren Sie die beiden Produktionsmatrizen und bestätigen Sie das Ergebnis aus Aufgabenteil c) durch eine einschrittige Rechnung!

so... ich habe folgende Produktionsmatrizen multipliziert:

[mm] \pmat{ 3 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 4 } [/mm] * [mm] \pmat{ 2 & 3 & 0 \\ 0 & 5 & 6 \\ 1 & 0 & 1 \\ 0 & 1 & 2 } [/mm]

das Ergebnis war dann: [mm] \pmat{ 6 & 6 & 4 & 5 \\ 6 & 22 & 0 & 29 \\ 4 & 2 & 2 & 5 \\ 2 & 6 & 0 & 9} [/mm]

das Ergebnis von Aufgabenteil c) ist:

[mm] \pmat{ 160 \\ 500 \\ 70 \\ 140 } [/mm]

Nun ist meine Frage, was mit einer einschrittigen Rechnung gemeint ist und wie es ungefähr aussehen muss...

Ich bedanke mich im Voraus
mfG LeylaS

        
Bezug
Multiplikation 2 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Fr 22.04.2011
Autor: angela.h.b.


> Hallo alle zusammen!
>
> ich habe folgendes Problem:
>  
> die Aufgabe lautet:
>  Multiplizieren Sie die beiden Produktionsmatrizen und
> bestätigen Sie das Ergebnis aus Aufgabenteil c) durch eine
> einschrittige Rechnung!
>  
> so... ich habe folgende Produktionsmatrizen multipliziert:
>  
> [mm]\pmat{ 3 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 4 }[/mm] *  [mm]\pmat{ 2 & 3 & 0 \\ 0 & 5 & 6 \\ 1 & 0 & 1 \\ 0 & 1 & 2 }[/mm]
>  
> das Ergebnis war dann: [mm]\pmat{ 6 & 6 & 4 & 5 \\ 6 & 22 & 0 & 29 \\ 4 & 2 & 2 & 5 \\ 2 & 6 & 0 & 9}[/mm]

Hallo,

da ist aber etwas gründlich schiefgelaufen.

Das Ergebnis von [mm] "3\times [/mm] 4-Matrix mal [mm] 4\times [/mm] 3-Matrix" muß nämlich eine [mm] 3\times [/mm] 3-Matrix sein.

Vermutlich hast Du die Matrizen genau falschrum hingeschrieben.
Wenn Du sie vertauschst, kann das Ergebnis stimmen, ich habe aber nur zwei Positionen nachgerechnet.

>  
> das Ergebnis von Aufgabenteil c) ist:
>  
> [mm]\pmat{ 160 \\ 500 \\ 70 \\ 140 }[/mm]
>  
> Nun ist meine Frage, was mit einer einschrittigen Rechnung
> gemeint ist und wie es ungefähr aussehen muss...

Da ich die genaue Aufgabenstellung nicht kenne, kann ich nur raten:

ich vermute, daß Du vorrechnen sollst, daß

[mm] $\pmat{ 6 & 6 & 4 & 5 \\ 6 & 22 & 0 & 29 \\ 4 & 2 & 2 & 5 \\ 2 & 6 & 0 & 9}$*\vektor{...\\...\\...\\...}=$\pmat{ 160 \\ 500 \\ 70 \\ 140 }$ [/mm]

richtig ist.

Gruß v. Angela

>  
> Ich bedanke mich im Voraus
> mfG LeylaS


Bezug
                
Bezug
Multiplikation 2 Matrizen: Komplette Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 16:14 Fr 22.04.2011
Autor: LeylaS

Hier habe ich die komplette Aufgabenstellung:

Zur Herstellung dreier Produkte P1, P2 und P3 braucht man vier verschiedene Zwischenprodukte Z1 bis Z4. Diese Zwischenprodukte werden aus den Rohstoffen R1 bis R3 gefertigt.

a) Zeichnen Sie das Produktionsnetz---> hab ich bereits gemacht.
b) Berechnen Sie den Bedarf an Zwischenprodukten für den Auftrag: 20 P1, 40 P2 und 50 P3.
c) Geben Sie den Bedarf an Rohstoffen für den Auftrag gemäß Teil b) an!
d) Multiplizieren Sie die beiden Produktionsmatrizen und bestätigen Sie das Ergebnis aus Aufgabenteil c) durch eine einschrittige Rechnung!

          P1     P2     P3
Z1       2       3       0
Z2       0       5       6
Z3       1       0       1
Z4       0       1       2

           Z1     Z2     Z3     Z4
R1        3       0       2       1
R2        0       2       0       1
R3        1       2       0       4


So das sind meine Ergebnisse:

b) Mpz= [mm] \pmat{ 2 & 3 & 0 \\ 0 & 5 & 6 \\ 1 & 0 & 1 \\ 0 & 1 & 2 } [/mm]
Mzr= [mm] \pmat{ 3 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 4 } [/mm]

[mm] \vec{e}= \pmat{ 20 \\ 40 \\ 50 } [/mm]

Mpz und [mm] \vec{e} [/mm] werden multipliziert und das Ergebnis ist:

[mm] \pmat{ 160 \\ 500 \\ 70 \\ 140 } [/mm]
also: Der Bedarf an Zwischenprodukten für den Auftrag beträgt Z1= 160, Z2= 500, Z3= 70 und Z4= 140 ( bin mir aber nichts sicher, ob es richtig ist )


c) Nun Mzr und das Ergebnis aus b) also: [mm] \pmat{ 160 \\ 500 \\ 70 \\ 140 } [/mm] multiplizieren. Ich habe da  [mm] \pmat{ 760 \\ 1140 \\ 1720 } [/mm] raus.


So jetzt hab ich alles aufgeschrieben... die Multiplikation beider Produktionsmatrizen hatte ich bereits aufgeschrieben... jetzt fehlt mir nur noch diese einschrittige Rechnung, wobei ich nicht weiß wie ich diese rechnen soll ....

mfG LeylaS



Bezug
                        
Bezug
Multiplikation 2 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Fr 22.04.2011
Autor: MathePower

Hallo LeylaS,

> Hier habe ich die komplette Aufgabenstellung:
>
> Zur Herstellung dreier Produkte P1, P2 und P3 braucht man
> vier verschiedene Zwischenprodukte Z1 bis Z4. Diese
> Zwischenprodukte werden aus den Rohstoffen R1 bis R3
> gefertigt.
>  
> a) Zeichnen Sie das Produktionsnetz---> hab ich bereits
> gemacht.
> b) Berechnen Sie den Bedarf an Zwischenprodukten für den
> Auftrag: 20 P1, 40 P2 und 50 P3.
>  c) Geben Sie den Bedarf an Rohstoffen für den Auftrag
> gemäß Teil b) an!
> d) Multiplizieren Sie die beiden Produktionsmatrizen und
> bestätigen Sie das Ergebnis aus Aufgabenteil c) durch eine
> einschrittige Rechnung!
>  
> P1     P2     P3
>  Z1       2       3       0
>  Z2       0       5       6
>  Z3       1       0       1
>  Z4       0       1       2
>  
> Z1     Z2     Z3     Z4
>  R1        3       0       2       1
>  R2        0       2       0       1
>  R3        1       2       0       4
>  
>
> So das sind meine Ergebnisse:
>  
> b) Mpz= [mm]\pmat{ 2 & 3 & 0 \\ 0 & 5 & 6 \\ 1 & 0 & 1 \\ 0 & 1 & 2 }[/mm]
>  
> Mzr= [mm]\pmat{ 3 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 4 }[/mm]
>  
> [mm]\vec{e}= \pmat{ 20 \\ 40 \\ 50 }[/mm]
>  
> Mpz und [mm]\vec{e}[/mm] werden multipliziert und das Ergebnis ist:
>  
> [mm]\pmat{ 160 \\ 500 \\ 70 \\ 140 }[/mm]
> also: Der Bedarf an Zwischenprodukten für den Auftrag
> beträgt Z1= 160, Z2= 500, Z3= 70 und Z4= 140 ( bin mir
> aber nichts sicher, ob es richtig ist )
>  


Das ist richtig. [ok]


>
> c) Nun Mzr und das Ergebnis aus b) also: [mm]\pmat{ 160 \\ 500 \\ 70 \\ 140 }[/mm]
> multiplizieren. Ich habe da  [mm]\pmat{ 760 \\ 1140 \\ 1720 }[/mm]
> raus.
>


[ok]


>
> So jetzt hab ich alles aufgeschrieben... die Multiplikation
> beider Produktionsmatrizen hatte ich bereits
> aufgeschrieben... jetzt fehlt mir nur noch diese
> einschrittige Rechnung, wobei ich nicht weiß wie ich diese
> rechnen soll ....


Nun, Du hast im ersten Schritt die Matrix Mpz mit dem Vektor [mm]\overrightarrow{e}[/mm] multipliziert. Das ist Aufgabenteil b)

Im Aufgabenteil c) hast Du das Ergebnis von links mit der
Matrix Mzr multipliziert. Demnach ergibt sich:

[mm]Mzr\*\left(Mpz\*\overrightarrow{e}\right)[/mm]

Stattdessen kannst Du auch rechnen: [mm]\left(Mzr\*Mpz\right)\*\overrightarrow{e}[/mm]

Demnach zuerst die beiden Matrizen multiplizieren und dieses
Ergebnis dann noch mit dem Vektor multiplizieren. Das geht,
weil die Matrizenmultiplikation assoziativ ist.


>  
> mfG LeylaS
>  


Gruss
MathePower  

Bezug
                                
Bezug
Multiplikation 2 Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:29 Fr 22.04.2011
Autor: LeylaS

Muss ich dann also [mm] \pmat{ 160 \\ 500 \\ 70 \\ 140 } [/mm] * [mm] \pmat{ 6 & 4 & 5 \\ 6 & 22 & 0 & 29 \\ 4 & 2 & 2 & 5 \\ 2 & 6 & 0 & 9 } [/mm] rechnen bzw. ist das dann die einschrittige Rechnung?

Ich blicke da nicht mehr durch... Bitte um Hilfe :(

Bezug
                                        
Bezug
Multiplikation 2 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Fr 22.04.2011
Autor: leduart

Hallo
ja, aber der Vektor kommt hinter die matrix.
Gruss leduart


Bezug
                                        
Bezug
Multiplikation 2 Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:02 Sa 23.04.2011
Autor: M.Rex

Hallo

Du musst bei der Vektor/Matrixmultiplikation die Reihenfolge unbedingt einhalten, die Matrixmultiplikation ist - wie Angela schon sagte - zwar Assotiativ, nicht aber kommutativ.

Es gilt also für Matrizen A, B und C

[mm] $(A\cdot B)\cdot C=A\cdot(B\cdot [/mm] C)$
Aber eben [mm] $A\cdot B\ne B\cdot [/mm] A$

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de