www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Multiplikationsformel
Multiplikationsformel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikationsformel: Unabhängigkeit
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 04.10.2006
Autor: Sweet-Nadine

Aufgabe
Eine Münze wird 3x geworfen. Betrachten Sie die folgenden Ergebnisse.
A:" ES fällt mindestens 2x Wappen."
B:" Beim ersten Wurd fällt Wappen."
C:" Beim 2. und 3. Wurf fällt dieselbe Seite."

Beweisen Sie, dass für A,B,C die Multiplikationsformel [mm] P(A\bigcup_{i=1}^{n}B\bigcup_{i=1}^{n}C)=P(A)*P(B)*P(C) [/mm] gilt, aber zugleich die Ereignisse A und B nicht unabhängig sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Halli Hallo,
also ich bin eine von den Menschen auf diesem Planeten, die sich fürchterlich schwer tun mit solchen mathematischen Beweisen. Das ist eine unserer Hausaufgaben, aber ich hab ka wie ich da vorgehen soll oder was damit eig. gemeint ist. Wäre nett, wenn mir einfach mal jemand einen Weg zeigen könnte wie er vor geht.
ICh weiß zwar, was die Unabhängigkeit bedeutet(dass ein Vorgang keinen Einfluss auf was anderes hat) und deshalb denke ich auch, dass A Und B unabhängig sind.

Vielen Dank schonmal.

LG Nadine

        
Bezug
Multiplikationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 04.10.2006
Autor: Zaed

Hallo Nadine,

du solltest dir erstmal aufschreiben, was [mm] P(A), P(B), P(C)[/mm] überhaupt ist. Ich gehe mal davon aus, dass ihr mit [mm] P(A) [/mm] die Wahrscheinlichkeit für Fall A bezeichnet. Dito für B und C. Dann gilt doch:

[mm] P(A) = \bruch{1}{2} [/mm]
[mm] P(B) = \bruch{1}{2} [/mm]
[mm] P(C) = \bruch{1}{2} [/mm]

Das kann man sich schnell klar machen, wenn man ein bisschen darüber nachdenkt. Oder du malst dir einfach ein Baumdiagramm ;)

[mm] P(A \cup B \cup C) [/mm] ist dann wohl die Wahrscheinlichkeit, dass alle drei Ereignisse zusammen auftreten. (zumindest würde ich das der Notation entnehmen)

Wenn du dir A,B und C mal anschaust, wird dir auffallen, dass 3x Wappen fallen muss. Und die Wahrscheinlichkeit dafür ist einfach [mm] \bruch{1}{8} [/mm]
Und man sieht,
[mm] P(A \cup B \cup C) = \bruch{1}{8} = \bruch{1}{2}*\bruch{1}{2}*\bruch{1}{2} = P(A)*P(B)*P(C) [/mm]

Ich denke mal, das Schwierige an der Aufgabe hier ist wohl die Schreibweise. Mann muss ersteinmal verstehen, was man überhaupt machen  soll :D

Zur Abhängigkeit von A und B: Hast du dich da auch wirkluch nicht verschrieben? Ich würde fast meinen, A und C sind abhängig voneinander. Denn sollte C wahr sein, dann muss es 2x Wappen gewesen sein. Denn sonst kann A nicht mehr erfüllt werden! Dito umgekehrt...

Bei A und B erkenne ich keine abhängigkeit, denn nach dem ersten Wurf verbeliben immer noch 2 andere um A zu erfüllen... Die einzigste Abhänigkeit liegt wohl darin, dass bei A die Wappen auf die Würfe (1,2), (1,3) oder gar (1,2,3) fallen können. Dann wäre natürlich B mit erfüllt.

Ich hoffe das hilft dir ein wenig, mfG Zaed

P.S.: Ich bin davon ausgegangen, dass du mit [mm] \bigcup_{i=1}^{n} = \cup [/mm] meintest. Alles andere würde keinen wirklichen Sinn ergeben :D





Bezug
                
Bezug
Multiplikationsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Mi 04.10.2006
Autor: Sweet-Nadine

ok also erstmal vielen Danke für die Antwort. Oh man ich komm mir gerade etwas bescheuert vor, nachdem deine Antwort wirklich einleuchtend war :)
Und ich meinte natürlich [mm] \cap [/mm] da zeichen und nich das [mm] \bigcap_{i=1}^{n} [/mm]

Ehm das mit der Unabhängigkeit war so richtig. Man sollte Beweisen, dass die Ereignisse A und B nicht unabhängig sind.

Hab dazu nochmal ne Frage.
Wenn ich jetzt sage, dass B eintritt, kann A ebenfalls eintreten, aber muss nich oder? Und umgekehrt wäre das doch wieder ein anderer Fall. Ich bin da manchmal etwas verwirrt, weil ich nich weiß von welchem Fall ich da ausgehen muss.

Sorry aber hab davon irgendwie echt keine Ahnung :/

Aber wäre nett wenn du mir nochmal helfen könntest.

Bezug
                        
Bezug
Multiplikationsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Mi 04.10.2006
Autor: Zaed

Schön, wenn ich dir helfen konnte und du die Lösung verstanden hast ;)

Bei der Abhängigkeit von A und B ist es egal von wo du ausgehst. Hauptsache du findest eine Abhängigkeit... z.B. wäre das hier eine Abhängigkeit: Wenn A eintritt kann B nicht mehr eintreten (in deiner Aufgabe ist das natürlich Schwachsinn) ;)

Aber eine Abhängigkeit bei A und B kann ich eigentlich nicht erkennen. Ich sehe sie nur bei A und C wie oben schon beschrieben... Wenn A eintritt kann B immernoch beides (eintreten oder nicht eintreten). Tritt A nicht ein, so kann B wieder erfüllt sein oder nicht. Umgekehrt das gleiche Spiel... Oo

mfG Zaed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de