www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Multiplikationssatz
Multiplikationssatz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikationssatz: Definition
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 09.03.2005
Autor: miss_quested

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo,
könnte jemand von euch uns vielleicht helfen, wir haben zu morgen ein referat und sind ein bisschen spät dran. Wir haben soweit alles fertig, aber wir kommen mit dem Multiplikationssatz nicht so ganz zu recht. Was sind denn Schnittereignisse? Was hat das denn mit dem M. zu tun? Was ist der Unterschied zwischen der bedingten Wahrscheinlichkeit und dem M.?? (Definition)
danke

        
Bezug
Multiplikationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 09.03.2005
Autor: Zwerglein

Ach ja, Miss_quested,

so geht's halt, wenn man alles bis auf's letzte Sekündchen aufschiebt!
Ich fang mal mit den "Schnittereignissen" an.
Nimm mal an, Du hast 100 Leute,
von denen sind 50 Brillenträger (B) und 30 Glatzköpfe (G).
Dann wäre das Schnittereignis: "brillentragende Glatzköpfe", B [mm] \cap [/mm] G.

Nun zur "bedingten Wahrscheinlichkeit"
Du nimmst z.B. nur die Glatzköpfe (zur Erinnerung: das sind 30) und schaust, wieviele Brillenträger unter diesen sind. Sagen wir mal: Das sind 10.
Dann ist die bedingte Wahrscheinlichkeit [mm] P_{G}(B) [/mm] = [mm] \bruch{10}{30} [/mm] = 0,333.
(Übrigens wären innerhalb dieser Personenmenge unter den Glatzköpfen weniger Brillenträger als in der Gesamtmenge: Glatzköpfe sehen besser! - Späßle g'macht!)
Wenn wir aber nun annehmen, dass Kahlköpfigkeit und Kurz/Weit-Sichtigkeit unabhängig voneinander sind, dann sollte die Wahrscheinlichkeit, unter den Glatzköpfigen Brillenträger zu finden, genauso groß sein wie in der Gesamtmenge.
Dies ist (und die Formel leite ich jetzt nicht her) genau dann der Fall, wenn die Wahrscheinlichkeit des Schnittereignisses genau so groß ist wie das Produkt der Einzelwahrscheinlichkeiten, wenn also P(B [mm] \cap [/mm] G) = P(B)*P(G) gilt. Vermutlich nennt Ihr das den "Multiplikationssatz"!?
In unserem Beispiel müsste also:   P(B [mm] \cap [/mm] G)  =0,3*0,5 = 0,15 gelten, das heißt: Unter den 100 Leuten sollten genau 15 glatzköpfige Brillenträger zu finden sein.

All clear now?

mfG!
Zwerglein

Bezug
                
Bezug
Multiplikationssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Mi 09.03.2005
Autor: miss_quested

Vielen vielen Dank und meinen großen Respekt an dich, wie du das erklärt hast (einleuchtend! :) ) und so schnell geantwortet!  DANKE DANKE DANKE! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de