www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Multivariable optimization
Multivariable optimization < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multivariable optimization: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 11.10.2009
Autor: toteitote

Aufgabe
Show that [mm] f(x,y)=Ax^ay^b-px-qy-r [/mm] (where A,a,b are positive constants, and p,q and r are arbitrary constants) is concave for [mm] x\ge0, y\ge0 [/mm] provided at [mm] a+b\le1 [/mm]

Hallo, allerseits!

Ich habe rausgefunden, dass [mm] f''_{11}\le0 [/mm] und [mm] f''_{22}\le0 [/mm] sind.

dann habe ich die Ableitungen in die Nachweisformel für Maxima eingesetzt und versucht, aufzulösen:

[mm] f''_{11}f''_{22}-(f''_{12})^2 [/mm]

[mm] =(-y^bAa^2x^{a-2})(-Ax^ab^2y^{b-2})-(Aax^{a-1}by^{b-1})^2 [/mm]

[mm] =(y^{b^2-2}A^2a^2x^{a^2-2}b^2)-(A^2a^2x^{2a-2}b^2y^{2b-2}) [/mm]

[mm] =A^2a^2b^2x^{-2}y^{-2}(y^{b^2}x^{a^2}-x^{2a}y^{2b}) [/mm]


Weiter komme ich nicht und die Ergebnisse im Buch erzählen mir was von folgender Gleichung:

[mm] f''_{11}f''_{22}-(f''_{12})^2=abA^2x^{2a-2}y^{2b-2}[1-(a+b)] [/mm]

Wie zur Hölle kommen die darauf? Kann mir das jemand beantworten? Danke, Tiemo


        
Bezug
Multivariable optimization: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 11.10.2009
Autor: rainerS

Hallo Tiemo!

> Show that [mm]f(x,y)=Ax^ay^b-px-qy-r[/mm] (where A,a,b are positive
> constants, and p,q and r are arbitrary constants) is
> concave for [mm]x\ge0, y\ge0[/mm] provided at [mm]a+b\le1[/mm]
>  Hallo, allerseits!
>  
> Ich habe rausgefunden, dass [mm]f''_{11}\le0[/mm] und [mm]f''_{22}\le0[/mm]
> sind.
>
> dann habe ich die Ableitungen in die Nachweisformel für
> Maxima eingesetzt und versucht, aufzulösen:
>  
> [mm]f''_{11}f''_{22}-(f''_{12})^2[/mm]
>  
> [mm]=(-y^bAa^2x^{a-2})(-Ax^ab^2y^{b-2})-(Aax^{a-1}by^{b-1})^2[/mm]

[notok]

[mm] = (\red{+}y^bA\red{a*(a-1)}x^{a-2})(\red{+}Ax^a\red{b(b-1)}y^{b-2})-(Aax^{a-1}by^{b-1})^2[/mm]

> [mm]=(y^{b^2-2}A^2a^2x^{a^2-2}b^2)-(A^2a^2x^{2a-2}b^2y^{2b-2})[/mm]

[notok]

Wie kommst du denn auf das [mm] $a^2$ [/mm] bzw [mm] $b^2$ [/mm] im Exponenten. Da steht

[mm] = A^2 a(a-1) b(b-1) y^{2b-2}x^{2a-2} - A^2 a^2 b^2 x^{2a-2}y^{2b-2} = A^2x^{2a-2}y^{2b-2} ab(1-b-a)[/mm]

Viele Grüße
  Rainer

Bezug
                
Bezug
Multivariable optimization: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Mo 12.10.2009
Autor: toteitote

Hallo und vielen dank für die antwort.
= [mm] A^2x^{2a-2}y^{2b-2} [/mm] ab(1-b-a)

Diesen Schritt kann ich nicht nachvollziehen. Bei mir fehlt eine 1.

= [mm] A^2 [/mm] a(a-1) b(b-1) [mm] y^{2b-2}x^{2a-2} [/mm] - [mm] A^2 a^2 b^2 x^{2a-2}y^{2b-2} [/mm]

= [mm] A^2abx^{2a-2}y^{2b-2}((b-1)(a-1)-ab) [/mm]

= [mm] A^2x^{2a-2}y^{2b-2} [/mm] ab(-(b+a))

Wo habe ich die denn verschluckt? Mfg tiemo

Bezug
                        
Bezug
Multivariable optimization: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mo 12.10.2009
Autor: fred97


> Hallo und vielen dank für die antwort.
> = [mm]A^2x^{2a-2}y^{2b-2}[/mm] ab(1-b-a)
>  
> Diesen Schritt kann ich nicht nachvollziehen. Bei mir fehlt
> eine 1.
>  
> = [mm]A^2[/mm] a(a-1) b(b-1) [mm]y^{2b-2}x^{2a-2}[/mm] - [mm]A^2 a^2 b^2 x^{2a-2}y^{2b-2}[/mm]
>
> = [mm]A^2abx^{2a-2}y^{2b-2}((b-1)(a-1)-ab)[/mm]
>  
> = [mm]A^2x^{2a-2}y^{2b-2}[/mm] ab(-(b+a))

Es ist (b-1)(a-1)-ab= ab -b-a+1-ab = 1-a-b

FRED



>  
> Wo habe ich die denn verschluckt? Mfg tiemo


Bezug
                                
Bezug
Multivariable optimization: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Mo 12.10.2009
Autor: toteitote

oh mann.... thx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de