www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - NEWTONVERFAHREN
NEWTONVERFAHREN < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NEWTONVERFAHREN: Tangentengleichung
Status: (Frage) beantwortet Status 
Datum: 19:51 Mi 05.01.2005
Autor: chegga

hi leute...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich muss a montag ne mathe gfs machen... ich hab da abern kleines problem:
In unserem Mathebuch  steht das man für das NV die Tangente am Punkt  x [mm] \circ [/mm] bestimmen muss!

Diese hat aus geometrischen Gründen die Gleichung:
y=f(x  [mm] \circ)+f'(x \circ) [/mm] *(x-x [mm] \circ) [/mm]

WIE KOMMT MAN AUF DIE GLEICHUNG?????
Die normale Geradengleichung ist doch y=mx+c

Könnt ihr mir das möglichst schnell erklären?

        
Bezug
NEWTONVERFAHREN: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 05.01.2005
Autor: moudi


> hi leute...
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  ich muss a montag ne mathe gfs machen... ich hab da abern
> kleines problem:
>  In unserem Mathebuch  steht das man für das NV die
> Tangente am Punkt  x [mm]\circ[/mm] bestimmen muss!
>  
> Diese hat aus geometrischen Gründen die Gleichung:
>  y=f(x  [mm]\circ)+f'(x \circ)[/mm] *(x-x [mm]\circ) [/mm]

Diese Gleichung ist von der Form y=mx+c, denn [mm]x_0[/mm] ist eine feste Zahl,  zur Verdeutlichung schreibe ich mal  a statt [mm]x_0[/mm]. Durch umformen erhält man
[mm]y=f(a)+f'(a) (x-a)=f'(a) x+f(a)-f'(a)\cdot a[/mm]
Es ist also [mm]m=f'(a)[/mm] und [mm]q=f(a)-f'(a)\cdot a[/mm]

>  
> WIE KOMMT MAN AUF DIE GLEICHUNG?????
>  Die normale Geradengleichung ist doch y=mx+c

i) Es sollte klar sein, dass die Tangente im Kurvenpunkt a die gleiche Steigung hat wie die Funktion, deshalb gilt m=f'(a) wie du oben sehen kannst.
ii) Der Punkt P(a,f(a)) auf der Kurve liegt auch auf der Tangente, deshalb muss P die Tangentengleichung erfüllen mit y=f(a) und x=a.
d.h. [mm]f(a)=m\cdot a+q[/mm]. Die Steigung m haben wir schon m=f'(a). Lösen wir die Gleichung nach q auf  so erhalten wir [mm]f(a)-m\cdot a=q[/mm] oder [mm]q=f(a)-f'(a)\cdot a[/mm], wie oben gesehen.

Du siehst diese Art der Tangentengleichung -- y=f`(a)(x-a) -- ist gleichwertig mit der anderen Form. Sie hat aber den Vorteil, dass man sie viel schneller hinschreiben kann, man brauch nur f`(a) zu berechnen.

>  
> Könnt ihr mir das möglichst schnell erklären?
>  

Bezug
        
Bezug
NEWTONVERFAHREN: Herleitung
Status: (Antwort) fertig Status 
Datum: 20:47 Mi 05.01.2005
Autor: MathePower

Hallo,

zunächst einmal ist das die Zweipunkteform:

[mm]\frac{{y\; - \;f\left( {x_0 } \right)}}{{x\; - \;x_0 }}\; = \;m[/mm]

Für m gilt nun folgendes:

[mm]m\; = \;\mathop {\lim }\limits_{h \to 0} \;\frac{{f(x_0 + \;h)\; - f\left( {x_0 } \right)}}{h}\; = \;f^{'} \left( {x_0 } \right)[/mm]

Die Gleichung

[mm]\frac{{f(x_0 + \;h)\; - f\left( {x_0 } \right)}}{h}[/mm]

ist die Steigung der Sekante.

Macht man den Abstand (h) immer kleiner, bis er schliesslich 0 wird,
so geht die Sekante über in eine Tangente.

Gruss
MathePower


Bezug
        
Bezug
NEWTONVERFAHREN: Hinweis auf MatheBank
Status: (Antwort) fertig Status 
Datum: 20:57 Mi 05.01.2005
Autor: informix

Hallo chegga,

[guckstduhier] MBTangente oder hier: MBNewton-Verfahren


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de