www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Nabla Operator in Klammer
Nabla Operator in Klammer < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nabla Operator in Klammer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Sa 14.05.2011
Autor: qsxqsx

Hallo,

Es gibt da eine Formel

[mm] \overrightarrow{F} [/mm] = [mm] \mu_{0}*(\overrightarrow{m}*\nabla)*\overrightarrow{H} [/mm]

,wobei F die Kraft, m das magnetische Moment und H die Magnetische Feldstärke bezeichnet.

Frage: Was bedeutet es wenn das Nabla zuerst in Klammer skalar Multipliziert wird? Ich versteh nicht wie ich das berechnen soll.

Grüsse

        
Bezug
Nabla Operator in Klammer: Divergenz
Status: (Antwort) fehlerhaft Status 
Datum: 10:08 Sa 14.05.2011
Autor: Marcel08

Hallo!


> Hallo,
>  
> Es gibt da eine Formel
>
> [mm]\overrightarrow{F}[/mm] =
> [mm]\mu_{0}*(\overrightarrow{m}*\nabla)*\overrightarrow{H}[/mm]
>  
> ,wobei F die Kraft, m das magnetische Moment und H die
> Magnetische Feldstärke bezeichnet.
>  
> Frage: Was bedeutet es wenn das Nabla zuerst in Klammer
> skalar Multipliziert wird? Ich versteh nicht wie ich das
> berechnen soll.


Ich würde das so interpretieren (für eine Problembetrachtung in kartesischen Koordinaten):

[mm] \nabla*\vec{m}=\bruch{\partial{m_{x}}}{\partial{x}}+\bruch{\partial{m_{y}}}{\partial{y}}+\bruch{\partial{m_{z}}}{\partial{z}}=div{\vec{m}} [/mm]

> Grüsse



Viele Grüße, Marcel

Bezug
                
Bezug
Nabla Operator in Klammer: Leider nicht
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:28 Sa 14.05.2011
Autor: Infinit

Das ist die in der Physik und teilweise auch in der theoretischen E-Technik gebräuchliche Schreibweise für einen Vektorgradienten.
Viele Grüße,
Infinit


Bezug
        
Bezug
Nabla Operator in Klammer: Vektorgradient
Status: (Antwort) fertig Status 
Datum: 11:25 Sa 14.05.2011
Autor: Infinit

Hallo qsxqsx,
Marcels Interpretation ist leider verkehrt, das ist die in der Physik gebräuchliche Schreibweise für einen Vektorgradienten (google mal danach).
Es gilt dabei:
[mm] (\vec{A} \cdot \nabla) \cdot \vec{B} = ({\em grad} \vec{B}) \cdot \vec{A} [/mm]
Viele Grüße,
Infinit


Bezug
                
Bezug
Nabla Operator in Klammer: Übersicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Sa 14.05.2011
Autor: Marcel08

Hallo!


Ist f=f(x,y,z) ein Skalarfeld und [mm] \vec{m}=\vec{m}(x,y,z)=(m_{x},m_{y},m_{z}) [/mm] ein Vektorfeld, so gilt mit [mm] \nabla=(\bruch{\partial}{\partial{x}},\bruch{\partial}{\partial{y}},\bruch{\partial}{\partial{z}}): [/mm]

[mm] \nabla{f}=(\bruch{\partial{f}}{{\partial{x}}},\bruch{\partial{f}}{{\partial{y}}},\bruch{\partial{f}}{{\partial{z}}})=grad(f)=Produkt [/mm] aus [mm] \nabla [/mm] und f

[mm] \nabla\vec{m}=\bruch{\partial{m_{x}}}{\partial{x}}+\bruch{\partial{m_{y}}}{\partial{y}}+\bruch{\partial{m_{z}}}{\partial{z}}=div(\vec{m})=Skalarprodukt [/mm] aus [mm] \nabla [/mm] und [mm] \vec{m} [/mm]

[mm] \nabla\times\vec{m}=\vmat{ \vec{i} & \vec{j} & \vec{k} \\ \bruch{\partial}{\partial{x} & \bruch{\partial}{\partial{y}} & \bruch{\partial}{\partial{z}}} \\ m_{x} & m_{y} & m_{z} }=rot(\vec{m})=Vektorprodukt [/mm] aus [mm] \nabla [/mm] und [mm] \vec{m} [/mm]



Gruß, Marcel

Bezug
                        
Bezug
Nabla Operator in Klammer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:17 Sa 14.05.2011
Autor: Diophant

Hallo Marcel,

aber die Multiplikation mit dem Nabla-OPerator ist doch nicht kommutativ, von daher teile ich den Einwand von Infinit.

Gruß, Diophant

Bezug
                                
Bezug
Nabla Operator in Klammer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Sa 14.05.2011
Autor: qsxqsx

Hi,

Danke für eure Interesse^^. (Ist noch interessant, dass der Vektorgradient "nicht mathematisch" ist).

Die Formel kam übrigens hiervon: []Magnetic Force Microscope

Grüsse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de