www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Nachweis Banachraum
Nachweis Banachraum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 07.02.2013
Autor: giga7

Aufgabe
Es sei y [mm] \in [/mm] C(R,R) und a > 0
Wir setzen [mm] \parallel [/mm] y [mm] \parallel [/mm] = sup{|y(x)|exp(-a|x-x0|)}
und Y = {y [mm] \in [/mm] C(R,R)| [mm] \parallel [/mm] y [mm] \parallel [/mm] < [mm] \infty} [/mm]

Zeige (Y, [mm] \parallel.\parallel) [/mm] ist ein Banachraum

Das jede Cauchyfolge punktweise konvergiert und die norm des grenzwertes beschränkt ist bekomme ich noch hin aber wie zeigt man, dass der grenzwert in C(R,R) liegt also steitig ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nachweis Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Do 07.02.2013
Autor: Gonozal_IX

Hiho,

vorweg: Eine Begrüßung und ein Abschied ist ein Ding der Höflichkeit und sollte schon drin sein. Einfach eine Aufgabe hier rein werfen nach der Art "Jemand wird schon antworten" ist nicht die feine englische Art!
Dann: Nutze bitte den Formeleditor, so sind deine Dinge nicht lesbar. Er ist leicht zu bedienen und sollte bei so leichten Dingen durchaus drin sein.

Zu deiner Aufgabe:

> Wir setzen [mm]\parallel[/mm] y [mm]\parallel[/mm] = sup{|y(x)|exp(-a|x-x0|)}

Das macht keinen Sinn.
Worüber bildest du das Supremum? Was ist [mm] $x_0$? [/mm]
Poste bitte die gesamte Aufgabenstellung, damit klar ist, was Sache ist.

>  Das jede Cauchyfolge punktweise konvergiert und die norm des grenzwertes beschränkt ist bekomme ich noch hin aber wie zeigt man, dass der grenzwert in C(R,R) liegt also steitig ist?

Das wird wohl darauf hinauslaufen, dass deine Konvergenz gleichmäßig ist, d.h. irgendwie wirst du deine Norm abschätzen müssen über eine Konstante mal der Supremumsnorm.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de