www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Näherung rektifizierbarer Kurve
Näherung rektifizierbarer Kurve < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherung rektifizierbarer Kurve: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:10 Mo 24.11.2014
Autor: BJJ

Hi,

standardmäßig definiert man die Länge einer rektifizierbaren Kurve durch den Grenzwert von immer feiner unterteilten Polygonzügen entlang der Punkte der Kurve.

Wie zeigt man, dass man mit immer feiner unterteilten Polygonzügen eine rektifizierbare Kurve beliebig genau approximieren kann, d.h. der Grenzwert konvergiert gegen die Kurve selbst.

Die Beweisidee wäre die Fläche zwischen Polygonzug und Kurve zu betrachten. Diese ist durch das Riemann-Integral gegeben. Mein Problem ist nun, dass die Liniensegmente nicht so gehorsam auf einer Achse liegen wie beim Riemann Integral.

Lässt sich die Behauptung trotzdem auf diesem Weg zeigen?

        
Bezug
Näherung rektifizierbarer Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 24.11.2014
Autor: fred97


> Hi,
>  
> standardmäßig definiert man die Länge einer
> rektifizierbaren Kurve durch den Grenzwert von immer feiner
> unterteilten Polygonzügen entlang der Punkte der Kurve.
>  
> Wie zeigt man, dass man mit immer feiner unterteilten
> Polygonzügen eine rektifizierbare Kurve beliebig genau
> approximieren kann, d.h. der Grenzwert konvergiert gegen
> die Kurve selbst.

Unsinn ! Ist [mm] P_n [/mm] eine Folge von solchen Polygonzügen und [mm] L(P_n) [/mm] die zugeh. Länge, so konv. [mm] (L(P_N)) [/mm] gegen die Länge der Kurve.

Einen Beweis hierzu findest Du in jedem Analysisbuch.

FRED

>  
> Die Beweisidee wäre die Fläche zwischen Polygonzug und
> Kurve zu betrachten. Diese ist durch das Riemann-Integral
> gegeben. Mein Problem ist nun, dass die Liniensegmente
> nicht so gehorsam auf einer Achse liegen wie beim Riemann
> Integral.
>
> Lässt sich die Behauptung trotzdem auf diesem Weg zeigen?  


Bezug
                
Bezug
Näherung rektifizierbarer Kurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Mo 24.11.2014
Autor: BJJ

Hallo,

Sie haben meine Frage nicht beantwortet.

Den Beweis, den Sie meinen kenne ich. Ich will aber etwas anderes wissen. Wie zeigt man, dass ein Polygonzug gegen eine rektifizierbare Kurve konvergiert, wenn man die Unterteilung immer feiner wählt.

Anders formuliert, folgt aus dem Grenzwert für Längen die Gleichheit von Kurven?


Bezug
        
Bezug
Näherung rektifizierbarer Kurve: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 26.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de