www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Näherungsfunktionen
Näherungsfunktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherungsfunktionen: x gegen +- unendlich
Status: (Frage) beantwortet Status 
Datum: 12:58 Sa 14.11.2009
Autor: MaLinkaja

Aufgabe
n<m

n=1 und m=2

f(x)= [mm] \bruch{3x}{x^2+1} [/mm]
[edit: informix]


Was beudeten n und m?
Wo finden sich die Werte von n und m wieder?
Wie tragen sie zu dem Endergebniss bei?

Woran erkenn ich das

[mm] \limes_{x\rightarrow \pm \infty} [/mm] f(x) = 0 ist?

und das es sich hierbei um eine waagerechte Asymptote der x-Achse mit y= 0 handelt?

        
Bezug
Näherungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Sa 14.11.2009
Autor: ChopSuey

Hallo,

verzichte bei Hochzahlen bitte IMMER auf diese doofen Tastaturexponenten. Man stellt immer erst mitten im Antworten fest, dass die Funktion/Folge um die es sich handelt eine ganz andere ist, als anfangs gedacht. -.- Schreibe $\ [mm] x^2 [/mm] $ als x ^2  ohne Leerzeichen!

> f(x)= [mm]\bruch{3x}{x²+1}[/mm]
>  Was beudeten n und m?
>  Wo finden sich die Werte von n und m wieder?
>  Wie tragen sie zu dem Endergebniss bei?

Was das $\ n $ und $\ m $ ist, kann ich dir auch nicht sagen, solange man nicht mehr erfährt. Ist das die Originalaufgabenstellung?

>  
> Woran erkenn ich das
>  
> [mm]\limes_{x\rightarrow \pm \infty}[/mm] f(x) = 0 ist?
>  
> und das es sich hierbei um eine waagerechte Asymptote der
> x-Achse mit y= 0 handelt?

$\ f(x)=  [mm] \bruch{3x}{x^2+1} [/mm] $

$\ [mm] \limes_{x\rightarrow \pm \infty}f(x) [/mm]  = [mm] \limes_{x\rightarrow \pm \infty}\left(\bruch{3x}{x^2+1} \right) [/mm] $

Klammer' $\ [mm] x^2 [/mm] $ im Nenner und Zähler aus und kürze anschliessend, dann erhältst du

$\ f(x) = [mm] \bruch{\frac{3}{x}}{1+\frac{1}{x^2}} [/mm]  $

Nun überlege, warum der Grenzwert $\ 0 $ ist, wenn $\ x [mm] \to \pm \infty [/mm] $ läuft.

Wenn $\ f(x) [mm] \to [/mm] 0 $ für alle $\ x [mm] \in \IR [/mm] $, dann ist doch Gerade $\ y = 0 $ die horizontale Asymptote.

Denk dran, dass der Grenzwert einer Funktion/Folge nie erreicht wird.

Gruß
ChopSuey



Bezug
                
Bezug
Näherungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Sa 14.11.2009
Autor: ChopSuey

Hallo,

an der Stelle $\ x = 0 $ ist natürlich $\ f(0) = 0 $

Gruß
ChopSuey

Bezug
        
Bezug
Näherungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Sa 14.11.2009
Autor: didda

Meines Erachtens ist der Grenzwert nicht 0, wenn du die Grenzwertsätze kennst kannst du die ja mal anweden, du wirst sehen, dass der Grenzwert 3 ist. Wenn du diese Sätze nicht kennst kannst du ja auch mal Werte für x einsetzen, so ergibt sich zum Beispiel für x=1000
[mm] \bruch{3000}{1001}=2.997 [/mm]

Wofür m und n stehen kann ich dir auch nicht sagen.

MfG

Bezug
                
Bezug
Näherungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Sa 14.11.2009
Autor: ChopSuey

Hallo didda,

die Funktion lautet $\ f(x) = [mm] \frac{3x}{x^{\red{2}} + 1} [/mm] $

Aber wegen den Tastaturhochzahlen wird der Exponent nicht angezeigt.

Grüße
ChopSuey

Bezug
        
Bezug
Näherungsfunktionen: Tipp
Status: (Antwort) fertig Status 
Datum: 13:03 Mo 16.11.2009
Autor: tiia

Hallo,

m und n dürften die jeweils höchsten Exponenten im Nenner bzw. Zähler sein.

Grüße
tiia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de