www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Näherungslösung
Näherungslösung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherungslösung: Idee
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 27.10.2012
Autor: Lonpos

Aufgabe
[mm] x^2+\epsilon*x-1=0 [/mm]

mit [mm] \epsilon<<1 [/mm]


Ich würde so an das Bsp. herangehen.

1) Entwickle x als Potenzreihe von [mm] \epsilon [/mm]

=> x= [mm] \summe_{k=0}^{\infty}a_k*\epsilon^k [/mm]

Setze in die Gleichung: [mm] (\summe_{k=0}^{\infty}a_k*\epsilon^{k})^2+\epsilon*\summe_{k=0}^{\infty}a_k*\epsilon^k-1=0 [/mm]

Möchte dies nun vereinfachen und Koeffizientenvergleich durchführen, kann mir dabei jemand helfen?

        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Sa 27.10.2012
Autor: Al-Chwarizmi


> [mm]x^2+\epsilon*x-1=0[/mm]
>  
> mit [mm]\epsilon<<1[/mm]

---->  worin soll denn nun die Aufgabe überhaupt
bestehen ?

Man kann die Gleichung ja ohne Problem exakt
lösen.

Und: die Aufgabe gehört wohl kaum in das Gebiet der
Differentialgleichungen.



>  Ich würde so an das Bsp. herangehen.
>  
> 1) Entwickle x als Potenzreihe von [mm]\epsilon[/mm]
>  
> => x= [mm]\summe_{k=0}^{\infty}a_k*\epsilon^k[/mm]
>  
> Setze in die Gleichung:
> [mm]\summe_{k=0}^{\infty}a_k^2*\epsilon^{2k}+\epsilon*\summe_{k=0}^{\infty}a_k*\epsilon^k-1=0[/mm]    [notok]

Eine Summe quadriert man nicht, indem man ihre einzelnen
Summanden quadriert !
  

> Möchte dies nun vereinfachen und Koeffizientenvergleich
> durchführen, kann mir dabei jemand helfen?

Da du ja wohl für eine Näherung nur ganz wenige
Glieder brauchst (z.B. quadratische Funktion in [mm] \epsilon), [/mm]
kannst du doch die dazu nötigen Summen einfach
mal hinschreiben und ihre ersten drei Summanden vergleichen.


Um zu einer einfachen Näherung zu kommen,
könntest du z.B. auch die Binomialreihe auf den
in der exakten Lösung entstehenden Wurzelterm
ansetzen.

LG   Al-Chw.


Bezug
                
Bezug
Näherungslösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Sa 27.10.2012
Autor: Lonpos

Das mit dem Quadrieren war natürlich vollkommener Schwachsinn, habe Klammern vergessen zu setzen.

Ich würde jedoch zuerst gerne eine Rekursionsformel für die Koeeffizienten [mm] a_k [/mm] allgemein bestimmen, und dann nur die ersten 3 oder 4 explizit hinschreiben.

Bezug
                        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Sa 27.10.2012
Autor: Al-Chwarizmi


> Das mit dem Quadrieren war natürlich vollkommener
> Schwachsinn, habe Klammern vergessen zu setzen.
>  
> Ich würde jedoch zuerst gerne eine Rekursionsformel für
> die Koeeffizienten [mm]a_k[/mm] allgemein bestimmen, und dann nur
> die ersten 3 oder 4 explizit hinschreiben.

Für eine allererste Rechnung würde ich mal vorschlagen,
einfach von einem quadratischen Näherungspolynom
auszugehen, also

     x = [mm] a_0+a_1*\epsilon+a_2*\epsilon^2 [/mm]

oder, damit es zum Hinschreiben etwas angenehmer
wird:

     x = [mm] a+b*\epsilon+c*\epsilon^2 [/mm]

und dann machst du in der entstehenden Gleichung
[mm] x^2+\epsilon*x-1=0 [/mm] nach dem Einsetzen den
Koeffizientenvergleich, soweit es eben geht.
Daraus erhältst du die richtigen Werte für [mm] a_0, a_1, a_2 [/mm] .

LG   Al-Chw.  


Bezug
                                
Bezug
Näherungslösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Sa 27.10.2012
Autor: Lonpos

Ich bin nun genauso vorgegangen und erhalte somit

[mm] a_0=1 [/mm]

[mm] a_1=\bruch{-1}{2} [/mm]

[mm] a_2=\bruch{3}{8} [/mm]

Leider ist hier keine Struktur für mich erkennbar um auf [mm] a_k [/mm] zu schließen.

P.S: Ich glaube, dass du [mm] O(\epsilon^3) [/mm] bie dir vergessen hast, dazu zu schreiben.

Bezug
                                        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Sa 27.10.2012
Autor: Al-Chwarizmi


> Ich bin nun genauso vorgegangen und erhalte somit
>  
> [mm]a_0=1[/mm]

Das ist nur eine von zwei möglichen Lösungen !
[mm] a_0=-1 [/mm]  geht ebenfalls.
  

> [mm]a_1=\bruch{-1}{2}[/mm]       [ok]
>  
> [mm]a_2=\bruch{3}{8}[/mm]         [notok]

Das richtige Ergebnis wäre:   [mm] a_2=\frac{1}{8*a_0} [/mm] ,
also [mm] a_2=\pm\frac{1}{8} [/mm]  (je nach dem Wert von [mm] a_0) [/mm]
  

> Leider ist hier keine Struktur für mich erkennbar um auf
> [mm]a_k[/mm] zu schließen.

Natürlich wird eine solche Struktur auch gar nicht sichtbar,
wenn du dich doch für alle [mm] a_k [/mm] interessiert.
Wenn ich richtig verstanden habe, war aber doch nur eine
praktische und einfache Näherungsformel mit ganz wenigen
Gliedern, brauchbar für [mm] \epsilon<<1 [/mm] , gefragt, oder ?

> P.S: Ich glaube, dass du [mm]O(\epsilon^3)[/mm] bie dir vergessen
> hast, dazu zu schreiben.

Ich habe nicht vergessen, es hinzuschreiben, sondern
es bewusst weggelassen. Wie ich das meinte, habe ich
mit meinen Worten angedeutet:

"und dann machst du in der entstehenden Gleichung
$ [mm] x^2+\epsilon\cdot{}x-1=0 [/mm] $ nach dem Einsetzen den
Koeffizientenvergleich, soweit es eben geht."


LG  


Bezug
                                                
Bezug
Näherungslösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Sa 27.10.2012
Autor: Lonpos

Es stimmt schon, dass für eine Näherungslösung für [mm] \epsilon [/mm] <<1 nur wenige Werte genügen, aber es würde mich trotzdem interessieren wie ich zu einer allgemeinen Rekursionsformel für die [mm] a_k [/mm] gelange.



Bezug
                                                        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Sa 27.10.2012
Autor: Al-Chwarizmi


> Es stimmt schon, dass für eine Näherungslösung für
> [mm]\epsilon[/mm] <<1 nur wenige Werte genügen, aber es würde mich
> trotzdem interessieren wie ich zu einer allgemeinen
> Rekursionsformel für die [mm]a_k[/mm] gelange.


Zu diesem Zweck möchte ich dir nochmals die
Binomialreihe ans Herz legen.
Beispielsweise gilt für positive kleine a :

   [mm] $\sqrt{1+a}\ [/mm] =\ [mm] (1+a)^{(1/2)}\ [/mm] =\ [mm] \sum_{k=0}^{\infty}\pmat{1/2\\k}*a^k$ [/mm]

LG    
Al-Chw.  


Bezug
                                                                
Bezug
Näherungslösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Sa 27.10.2012
Autor: Lonpos

So erhalte ich doch die exakte Lösung, also umformen zu [mm] x=\bruch{1}{1+\epsilon}=\ \sum_{k=0}^{\infty}\pmat{-1/2\\k}\cdot{}\epsilon^k [/mm]

Aber ich möchte durch Einsetzen von [mm] x=\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^k [/mm] und durch Koeffiezientenvergleich eine rekursove Formel für die [mm] a_k [/mm] erhalten.

Bezug
                                                                        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 So 28.10.2012
Autor: MathePower

Hallo Lonpos,

> So erhalte ich doch die exakte Lösung, also umformen zu
> [mm]x=\bruch{1}{1+\epsilon}=\ \sum_{k=0}^{\infty}\pmat{-1/2\\k}\cdot{}\epsilon^k[/mm]
>  
> Aber ich möchte durch Einsetzen von
> [mm]x=\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^k[/mm] und durch
> Koeffiezientenvergleich eine rekursove Formel für die [mm]a_k[/mm]
> erhalten.  


Nun, dann mußt Du

[mm](\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^{k})^2=\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^{k}*\summe_{l=0}^{\infty}a_l\cdot{}\epsilon^{l}[/mm]

mit Hilfe der []Cauchy-Produktformel berechnen und in

[mm] (\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^{k})^2+\epsilon\cdot{}\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^k-1=0[/mm]

einsetzen.

Dann kannst Du einen Koeffizientenvergleich durchführen.


Gruss
MathePower

Bezug
                                                                                
Bezug
Näherungslösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 So 28.10.2012
Autor: Lonpos

Unter Verwendung der Produktformel erhalte ich

[mm] \summe_{k=0}^{\infty}(\summe_{n=0}^{k}a_n*a_{k-n})\epsilon^k+\epsilon\cdot{}\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^k-1=0 [/mm]

Wie kann der Term vereinfacht werden, damit die Koeffizienten ablesbar sind?


Bezug
                                                                                        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 So 28.10.2012
Autor: MathePower

Hallo Lonpos,

> Unter Verwendung der Produktformel erhalte ich
>  
> [mm]\summe_{k=0}^{\infty}(\summe_{n=0}^{k}a_n*a_{k-n})\epsilon^k+\epsilon\cdot{}\summe_{k=0}^{\infty}a_k\cdot{}\epsilon^k-1=0[/mm]
>
> Wie kann der Term vereinfacht werden, damit die
> Koeffizienten ablesbar sind?
>  


Dazu muss dieser Term nach Potenzen von [mm]\epsilon[/mm] sortiert werden.


Gruss
MathePower

Bezug
                                                                                                
Bezug
Näherungslösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 So 28.10.2012
Autor: Lonpos

Das führt auf folgende Gleichung

[mm] \summe_{n=0}^{k}a_n*a_{k-n}+a_{k-1}=0 [/mm] wobei [mm] a_{-1}=-1 [/mm]

Wenn ich nun k, jeweils 0,1,2,3,... setze kann ich die [mm] a_k [/mm] iterativ bestimmen, aber ich kann keine Rekursionsformel ablesen??

Bezug
                                                                                                        
Bezug
Näherungslösung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 So 28.10.2012
Autor: MathePower

Hallo Lonpos,

> Das führt auf folgende Gleichung
>  
> [mm]\summe_{n=0}^{k}a_n*a_{k-n}+a_{k-1}=0[/mm] wobei [mm]a_{-1}=-1[/mm]
>  
> Wenn ich nun k, jeweils 0,1,2,3,... setze kann ich die [mm]a_k[/mm]
> iterativ bestimmen, aber ich kann keine Rekursionsformel
> ablesen??


Dazu musst Du die Summe noch auseinanderdividieren,
so daß Du eine Formel für das [mm]a_{k}[/mm] herausbekommst.


Gruss
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de