www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Näherungsparabel Taylerform
Näherungsparabel Taylerform < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherungsparabel Taylerform: Vorzeichenfehler?
Status: (Frage) beantwortet Status 
Datum: 15:17 Do 05.06.2008
Autor: brichun

Aufgabe
[mm]f(x)=\wurzel[3]{1-x^2}[/mm]

Näherungsparabel zweiter Ordung mit Hilfe von Taylerformel am
Entwicklungspunkt xo=0
Die Talerformel: [mm]f(x)=f(Xo)+f^1(Xo)(X-Xo)+\bruch{f^2(Xo)}{2!}*(X-Xo)^2[/mm]

Ableitungen:

[mm]f^1(x)=\bruch{2x}{3\wurzel[3]{(1-x^2)^2}}[/mm]
[mm]f^2(x)=\bruch{8x^2}{9\wurzel[3]{(1-x^2)^5}}+\bruch{2}{3\wurzel[3]{(1-x^2)^2}}[/mm]

Die Ableitungen müssen Richtig sein hab sie mit einem Matheprogramm überprüft.

für die Taylerform hab ich folgendes raus:

[mm]f(x)=1+\bruch{1}{3}*x^2}[/mm]

in der Lösung bei mir steht da anstelle von dem + ein - .

Ich hab die beiden Funktionen mal in einen Grafikrechner eingegeben.
Die [mm]f(x)=\wurzel[3]{1-x^2}[/mm] ähnelt  im bereich -1 bis 1 einer Parabel die nach unten geöffnet ist.
Wenn ich keinen Vorzeichendreher hatte woher weiss ich ob die Näherungsparabel positiv oder negativ sein soll??



        
Bezug
Näherungsparabel Taylerform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Do 05.06.2008
Autor: Al-Chwarizmi


> [mm]f(x)=\wurzel[3]{1-x^2}[/mm]
>  
> Näherungsparabel zweiter Ordung mit Hilfe von Taylerformel

             Taylor !

> am
>  Entwicklungspunkt xo=0
>  Die Taylorformel:
> [mm]f(x)=f(Xo)+f^1(Xo)(X-Xo)+\bruch{f^2(Xo)}{2!}*(X-Xo)^2[/mm]
>  Ableitungen:
>  
> [mm]f^1(x)=\bruch{2x}{3\wurzel[3]{(1-x^2)^2}}[/mm]     [notok]
>  
> [mm]f^2(x)=\bruch{8x^2}{9\wurzel[3]{(1-x^2)^5}}+\bruch{2}{3\wurzel[3]{(1-x^2)^2}}[/mm]       [notok]

  

> Die Ableitungen müssen Richtig sein hab sie mit einem
> Matheprogramm überprüft.

das sind sie leider nicht -  in  [mm] f^1(x) [/mm] ist dein vermuteter Vorzeichenfehler,
der sich auch in [mm] f^2(x) [/mm]  fortgepflanzt hat.

>  
> für die Taylorform hab ich folgendes raus:
>  
> [mm]f(x)=1+\bruch{1}{6}*x^2}[/mm]           [notok]

... ich erhalte:      [mm]f(x)=1-\bruch{1}{3}*x^2}[/mm]

    (möglicherweise hast du den Nenner  2!  übersehen)
  

> in der Lösung bei mir steht da anstelle von dem + ein - .
>  
> Ich hab die beiden Funktionen mal in einen Grafikrechner
> eingegeben.
>  Die [mm]f(x)=\wurzel[3]{1-x^2}[/mm] ähnelt  im bereich -1 bis 1
> einer Parabel die nach unten geöffnet ist.
>  Wenn ich keinen Vorzeichendreher hatte woher weiss ich ob
> die Näherungsparabel positiv oder negativ sein soll??


Die Näherungsparabel müsste (wenigstens in einer kleinen
Umgebung von 0 ) gleich gekrümmt sein wie die Originalfunktion.


LG

Bezug
                
Bezug
Näherungsparabel Taylerform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Do 05.06.2008
Autor: brichun

Danke ......

jetzt hab ichs auch gefunden das Nachdifferenzieren von -2x , da hab ich das Vorzeichen übersehen.

und jetzt stimmt auch das Ergebnis :)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de