www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Natürlicher Logarithmus
Natürlicher Logarithmus < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Do 17.09.2009
Autor: ein_weltengel

Aufgabe
[mm] \integral_{a}^{b}{(ln(x))^{2} dx} [/mm]

Ich bin mir nicht ganz sicher bei dieser Aufgabe. Ich hab mir gedacht:

[mm] \bruch{1}{3}(x [/mm] ln(x) - [mm] x)^{x} [/mm] ... doch irgendwie glaub ich nicht, dass das Ergebnis ganz richtig ist ...

        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Do 17.09.2009
Autor: Herby

Hallo,

dieses Integral knackst du nur durch mehrmalige partielle Integration:

[mm] \integral{ln(x)*ln(x)\ dx}=... [/mm]


Für die Stammfunktion von ln(x), die ja wiederum in der partiellen Integration vorkommt, musst du dann abermals partiell integrieren:

[mm] \integral{ln(x)\ dx}=\integral{1*ln(x)\ dx}=... [/mm]


Lg
Herby

Bezug
                
Bezug
Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:18 Do 17.09.2009
Autor: ein_weltengel

[mm] \integral_{a}^{b}{(ln(x))2 dx} [/mm] = [mm] \integral_{a}^{b}{ln(x) * ln(x) dx} [/mm] = ln(x) * (x ln(x) - x) - [mm] \integral_{a}^{b}{\bruch{1}{x} ln(x) dx} [/mm] = ln(x) * (x ln(x) - x) - ln(x) * [mm] -\bruch{1}{2}x^{-2} [/mm] -  [mm] \integral_{a}^{b}{\bruch{1}{x} * \bruch{1}{x} dx} [/mm] = ln(x) * (x ln(x) - x) - ln(x) * [mm] -\bruch{1}{2}x^{-2} [/mm] + [mm] \bruch{1}{3}x^{-3} [/mm]

Stimmt das so?

Bezug
                        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 01:25 Do 17.09.2009
Autor: Herby

Hi,

mal schauen :-)

> [mm]\integral_{a}^{b}{(ln(x))2 dx}[/mm] = [mm]\integral_{a}^{b}{ln(x) * ln(x) dx}[/mm]
> = ln(x) * (x ln(x) - x) - [mm]\integral_{a}^{b}{\bruch{1}{x} ln(x) dx}[/mm]

nein, der Anfang ist richtig, aber im rechten Integral müsste folgendes stehen

[mm] \integral{\bruch{1}{x}*(x*ln(x)-x)\ dx}=\integral{ln(x)-1\ dx} [/mm]

Damit solltest du auf die Lösung kommen.


Lg
Herby

Bezug
                                
Bezug
Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Do 17.09.2009
Autor: ein_weltengel

Ach ja, da war wohl ein Fehler *augenroll*

Meine Lösung:

ln(x) * (x * ln(x) - x) - (x * ln(x) - x) - x = ln(x) * (x * ln(x) - x) - x * ln(x) =
ln(x) * (x * ln(x) - 2x)

Stimmt das so?

Bezug
                                        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 01:39 Do 17.09.2009
Autor: Herby

Salut,

> Ach ja, da war wohl ein Fehler *augenroll*
>  
> Meine Lösung:
>  
> ln(x) * (x * ln(x) - x) - (x * ln(x) - x) - x

das letzte Minus muss ein Plus sein, da vor dem Integral auch ein Minus stand

> = ln(x) * (x * ln(x) - x) - x * ln(x) +2x
> = ln(x) * (x * ln(x) - 2x) +2x
>  
> Stimmt das so?

[daumenhoch] ja ;-)


Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de