www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Navier-Stokes-Gleichung
Navier-Stokes-Gleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Navier-Stokes-Gleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 02.03.2009
Autor: Kreator

Aufgabe
Advektive Strömung
Diese Aufgabe dient der Veranschaulichung des advektiven Anteils in den Bilanzgleichungen. Betrachten Sie einen Wasserfall. Die Fallhöhe beträgt 100m. Der Wasserfall ist zeitlich stationär und reibungslos.
a) Diskutieren Sie alle Terme der Navier-Stokes-Gleichung?
b) Welche Terme verschwinden?
c) Benutzen Sie die resultierende Gleichung, um die Geschwindigkeit des Wassers beim Aufprall am Fuss des Wasserfalls auszurechnen.

Aufgabe a) und b) habe ich gelöst. Dabei habe ich angenommen, das es sich nicht um ein rotierendes System hadelt, wodurch der Coriolis-Term in der Navier-Stokes-Gl. rausfällt.  Mit den übrigen Annahmen komme ich auf folgende Gleichung für die z-Komponente:

[mm] u*\bruch{\partial w}{\partial x} [/mm] + [mm] v*\bruch{\partial w}{\partial y} [/mm] + [mm] w*\bruch{\partial w}{\partial z} [/mm] =- [mm] \bruch{1}{roh}*\bruch{\partial p}{\partial z} [/mm] - g

Wie komme ich nun weiter? Kann ich z. B. einfach annehmen, dass die Geschwindigkeiten u und v gleich Null sind und dass der Druckgradient in z-Richtung ebenfalls Null ist (dann wäre die Gleichung einfach zu lösen :-)

        
Bezug
Navier-Stokes-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mo 02.03.2009
Autor: Kroni

Hi,

dass die [mm] $u_x$ [/mm] und [mm] $u_y$-Komponente [/mm] Null ist, könnte man annehmen, also dass der Wasserfall senkrecht nach unten fällt.

Eigentlich kann man auch davon ausgehen, dass es keinen Druckgradienten gibt. Das einzige, was man annehmen könnte wäre, dsas man den Wasserfall als "Wassertopf" der Höhe h annimmt, wo dann [mm] $p(h)=\rho [/mm] g h$ gelten würde. Aber ich denke, dass die Wassertropfen dort schon so entkoppelt sind, dass es keinen Druckgradienten gibt. Den Luftdruck auf 100m kann man eg auch als konstant ansetzen, so dass sich der Term schon vereinfachen könnte.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de