www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Nebenklassen der Untergruppen
Nebenklassen der Untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nebenklassen der Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 24.06.2013
Autor: Ptolemaios

Aufgabe
Nebenklassen der Untergruppen der multipl. Gruppe [mm] \IZ_{18}[/mm] bestimmen.


Hi,

die Elemente der Gruppe sind {1, 5, 7, 11, 13, 17} und die Untergruppen habe ich so:
Untergruppe a: <1> = {1}
Untergruppe b: <17> = {1, 17}
Untergruppe c: <7> = <13> = {1, 7, 13}
Untergruppe d: <5> = <11> = {1, 5, 7, 11, 13, 17}

Stimmt, oder?
Nun weiß ich bei den Nebenklassen aber einfach nicht weiter. Kann mir da bitte jemand weiterhelfen?
Vielen Dank!

Gruß Ptolemaios

        
Bezug
Nebenklassen der Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mi 26.06.2013
Autor: Schadowmaster

moin,

deine Untergruppen sehen gut aus.
Nehmen wir uns als ein Beispiel mal die Untergruppe $b$ und nennen die Einheitengruppe $E$.
Gesucht ist jetzt $E/b$.
Dies ist eine Menge von Restklassen, also
[mm] $E/b=\{[x] \mid x \in E\}$. [/mm]
Hierbei ist $[x] := [mm] \{y \in E \mid xy^{-1} \in b\}$ [/mm] die Restklasse von $x$ nach $b$.
Man kann zeigen, dass $[x]$ immer die Form $[x] = [mm] x\cdot [/mm] b := [mm] \{x\cdot z \mid z \in b\}$ [/mm] hat; weißt du das bereits?

Setzen wir das mal voraus, so können wir die Restklassen recht schnell bestimmen:
$[1] = [mm] 1\cdot [/mm] b = [mm] \{1,17\}$. [/mm]
Nun nehmen wir uns ein Element, das hier noch nicht drin ist, zB die 5:
$[5] = [mm] 5\cdot [/mm] b = [mm] \{5\cdot 1, 5\cdot 17\} [/mm] = [mm] \{5,13\}$. [/mm]
Welches Element hatten wir jetzt noch nicht?
Die $7$ zB fehlt noch:
$[7] = [mm] 7\cdot [/mm] b = [mm] \{7,11\}$ [/mm]
Also wissen wir jetzt: $E/b = [mm] \{[1],[5],[7]\}$. [/mm]

Was ich hier ganz stark benutzt habe: Die Menge der Nebenklassen bildet eine Partition der Gruppe, das heißt jedes Gruppenelement ist in genau einer Nebenklasse enthalten.

Sollte noch etwas unklar sein oder du einige der Begriffe nicht kennen frag ruhig nach; und sag dann am besten auch, was genau du schon weißt und wo genau es hakt.


lg

Schadow

Bezug
                
Bezug
Nebenklassen der Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Mi 26.06.2013
Autor: Ptolemaios

Hi shadowmaster,

danke für deine Antwort! Ich hoffe ich habe das richtig verstanden, folgendes habe ich nun:
E/a = {1, 5, 7, 11, 13, 17}
E/b = {1, 5, 7}
E/c = {1, 5}
E/d = {1}

Also ich habe mit dem niedrigsten Element angefangen und dann solange Elemente eingesetzt, bis ich alle durch hatte. Stimmt das?
Der Satz "...jedes Gruppenelement ist in genau einer Nebenklasse enthalten" hat mich etwas verwirrt...

Gruß Ptolemaios

Bezug
                        
Bezug
Nebenklassen der Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mi 26.06.2013
Autor: Schadowmaster

Das stimmt fast.
Du hast nur in den Mengen nicht die Elemente selber stehen, sondern die Restklassen.
Also zB $E/c = [mm] \{[1],[5]\} [/mm] = [mm] \{ \{1,7,13},{5,11,17\}\}$. [/mm]
Du musst bedenken: Jede Nebenklasse ist selbst wieder eine Menge, wenn wir uns die Menge der Nebenklassen angucken so betrachten wir also eine Menge von Mengen.
Was du hingeschrieben hast ist ein Vertretersystem (aus jeder Nebenklasse genau ein Vertreter).
Das ist ein sehr guter Anfang und oftmals auch das, was man wissen möchte; aber wenn nach den Nebenklassen gefragt ist, solltest du dir nochmal genau den Unterschied klar machen.

lg

Schadow

Bezug
                                
Bezug
Nebenklassen der Untergruppen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:14 Mi 26.06.2013
Autor: Ptolemaios

Ok, aber dann müsste man das bei der b) auch so schreiben, oder? Irgendwie verstehe ich gerade den Sinn und Zweck nicht mehr, das sind ja wieder alle Gruppenelemente, nur in einer anderen Reihenfolge? Die a und die d wären aber so oder so korrekt, oder?

E/b = {(1), (5), (7)} = {(1, 17, 5, 13, 7, 11)}

Gruß Ptolemaios

Bezug
                                        
Bezug
Nebenklassen der Untergruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 28.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Nebenklassen der Untergruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Sa 29.06.2013
Autor: Ptolemaios

Danke an Schadowmaster. Habe es nun gesehen und hinbekommen.

Gruß Ptolemaios

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de