www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Negative Exponenten
Negative Exponenten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Negative Exponenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 So 27.01.2013
Autor: Reinalem

Aufgabe
Berechnen Sie ohne Taschenrechner
[mm] (0,2)^{-3} [/mm]

Hallo,

mein Ansatz zur Lösung dieser Aufgabe ist: [mm] \bruch{1}{0,2^{3}} [/mm] = [mm] \bruch{10}{2^{3}} [/mm] = [mm] \bruch{10}{8} [/mm] = 1,25

Bei meiner Musterlösung kommt 125 raus und sie hat den Ansatz: [mm] (\bruch{1}{0,2})^{3}. [/mm]  Dadurch kommt nach dem erweitern mit 10 die Verschiebung des Kommas zustande.

Da die allgemeine Formel für negative Exponenten [mm] a^{-n} [/mm] = [mm] \bruch{1}{a^{n}} [/mm] ist irritiert mich der obige Ansatz.

Liegt es an den Klammern um 0,2 oder lautet der allgemeine Ansatz anders?

Viele Grüße



        
Bezug
Negative Exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 So 27.01.2013
Autor: MathePower

Hallo Reinalem,

> Berechnen Sie ohne Taschenrechner
>  [mm](0,2)^{-3}[/mm]
>  Hallo,
>  
> mein Ansatz zur Lösung dieser Aufgabe ist:
> [mm]\bruch{1}{0,2^{3}}[/mm] = [mm]\bruch{10}{2^{3}}[/mm] = [mm]\bruch{10}{8}[/mm] =
> 1,25
>  
> Bei meiner Musterlösung kommt 125 raus und sie hat den
> Ansatz: [mm](\bruch{1}{0,2})^{3}.[/mm]  Dadurch kommt nach dem
> erweitern mit 10 die Verschiebung des Kommas zustande.
>  
> Da die allgemeine Formel für negative Exponenten [mm]a^{-n}[/mm] =
> [mm]\bruch{1}{a^{n}}[/mm] ist irritiert mich der obige Ansatz.
>  
> Liegt es an den Klammern um 0,2 oder lautet der allgemeine
> Ansatz anders?
>  


Es liegt daran, wie Du erweitert hast.

Multiplizierst Du den Nenner mit [mm]10^{3}[/mm],
so mußt Du dies auch Zähler tun, um den gegebenen
Bruch nicht zu verändern.


> Viele Grüße
>  


Gruss
MathePower



Bezug
                
Bezug
Negative Exponenten: Erweitern
Status: (Frage) beantwortet Status 
Datum: 17:13 So 27.01.2013
Autor: Reinalem

Hallo MathePower,

danke für die schnelle Antwort.

Was ich nicht ganz versteh ist, warum ich mit [mm] 10^{3} [/mm] erweitern muss? In meiner Lösung will ich mit 10 erweitern um das Komma loszuwerden.

Also [mm] \bruch{1}{0,2^{3}} [/mm] = [mm] \bruch{1*10}{0,2^{3} * 10} [/mm]

Liegt der Fehler darin, dass der untere Teil des Bruchs durch die Erweiterung nicht mit:

0,2 * 0,2 * 0,2 * 10 sondern mit 0,2 * 10 * 0,2 * 10 * 0,2 * 10 gleichzusetzen ist?

Gruss
Reinalem


Bezug
                        
Bezug
Negative Exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 27.01.2013
Autor: abakus


> Hallo MathePower,
>  
> danke für die schnelle Antwort.
>  
> Was ich nicht ganz versteh ist, warum ich mit [mm]10^{3}[/mm]
> erweitern muss? In meiner Lösung will ich mit 10 erweitern
> um das Komma loszuwerden.
>  
> Also [mm]\bruch{1}{0,2^{3}}[/mm] = [mm]\bruch{1*10}{0,2^{3} * 10}[/mm]
>  
> Liegt der Fehler darin, dass der untere Teil des Bruchs
> durch die Erweiterung nicht mit:
>  
> 0,2 * 0,2 * 0,2 * 10 sondern mit 0,2 * 10 * 0,2 * 10 * 0,2
> * 10 gleichzusetzen ist?

Wenn du IN JEDEM der drei Faktoren 0,2 das Komma beseitigen willst, musst du auch mit drei Faktoren 10 erweitern.

Diese Vorgehensweise ist allerdings in dieser Aufgabe überflüssig.
Es ist bekannt (?), dass [mm] $0,2=\frac15$ [/mm] gilt.
Der gegebene Term lautet also [mm] $(\frac{1}{5})^{-3}$. [/mm]
Gruß Abakus

>  
> Gruss
>  Reinalem
>    


Bezug
                                
Bezug
Negative Exponenten: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 So 27.01.2013
Autor: Reinalem

Danke für die Antwort, jetzt ist es klar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de