www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Neilsche Parabel, regulär
Neilsche Parabel, regulär < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Neilsche Parabel, regulär: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Sa 12.01.2013
Autor: quasimo

Aufgabe
Die Neilsche Parabel [mm] \gamma [/mm] : [mm] \IR [/mm] -> [mm] \IR^2 [/mm] wobei [mm] \gamma(t)=(t^2,t^3); [/mm] es ist [mm] \gamma' [/mm] (t)= [mm] (2t,3t^2) [/mm] daher [mm] \gamma'(0)=(0,0) [/mm] und [mm] \gamma [/mm] nicht regeulär.

Die Neilsche Parabel ist aber stückweise regulär, wie muss ich die Zerlegung wählen so dass die Einschränkung jeweils regulär ist?
Im Skriptum steht:
[mm] \alpha(t)= \begin{cases} (-t,-|t|^{3/2}) & \mbox{für } t<0 \\ (t,t^{3/2}) & \mbox{für } t>=0 \end{cases} [/mm]
Wie kommt man aber nur darauf?
LG

        
Bezug
Neilsche Parabel, regulär: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Sa 12.01.2013
Autor: Richie1401

Hallo quasimo,

das mit der Regularität ist ja quasi: "Der Tangentenvektor darf nicht verschwinden." Man sucht also eine äquivalente Umformung für  [mm] \gamma, [/mm] sodass [mm] \gamma'(t)\not=0 [/mm] für alle [mm] t\in\IR. [/mm]

Ich gehe dabei wie folgt vor:
Es ist [mm] x=t^2 [/mm] und [mm] y=t^3. [/mm] Daraus ergibt sich [mm] t=\pm\sqrt{x}. [/mm] Eingesetzt in $y$ erhält man [mm] y(x)=\pm{}x^{3/2}. [/mm]
Jetzt kann man neu parametrisieren, muss aber $x<0$ und $x>0$ unterscheiden. Natürlich muss man auch den Fall $x=0$ in einer der beiden Fälle mit einbeziehen. Daraus ergeben sich dann zwei Teilkurven. Wählt man $x=t$. So ist [mm] $\frac{dx}{dt}=1$ [/mm] und somit ist die Kurve regulär.

Bezug
                
Bezug
Neilsche Parabel, regulär: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Sa 12.01.2013
Autor: quasimo

danke supa ;)
LG

Bezug
        
Bezug
Neilsche Parabel, regulär: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Sa 12.01.2013
Autor: Al-Chwarizmi

Naja,  die Kurve ist für positive x regulär, für
negative x ebenfalls, aber eben an der einzigen
Stelle x=0 nicht.

Das sollte doch genügen für die Eigenschaft
"stückweise regulär".

An der Stelle x=0 als Notbehelf doch noch einen
Tangentialvektor ad hoc einzuführen, halte ich
irgendwie nicht für ganz redlich. Denn die Kurve
hat dort einen Umkehrpunkt, in welchem man
keinen Tangentialvektor positiven Betrags fest-
setzen kann, ohne den Begriff der Differenzier-
barkeit bis zum Zerreißen zu strapazieren !

LG,   Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de