www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Nenner wird unendlich klein
Nenner wird unendlich klein < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nenner wird unendlich klein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Fr 23.04.2010
Autor: kawu

Hallo!

Ich habe hier folgende Funktionssschar: [mm] $f_k(x) [/mm] = [mm] \frac{2x-k}{(x+k)^2}$ [/mm]

Nun möchte ich das Verhalten von [mm] $f_k(x)$ [/mm] an seiner Definitionslücke -k untersuchen:

Der Grenzwert [mm] $\lim_{x\nearrow -k} \left(\frac{2x-k}{(x+k)^2}\right)$ [/mm] ist gesucht. Wie komme ich nun an diesen Grenzwert? Der Zähler grenzt gegen -3k und der Nenner wird unendlich klein.

Darf ich annehmen, dass der Grenzwert deswegen [mm] $\infty$ [/mm] ist? Der Nenner wird schließlich unendlich klein und das Inverse Element dieses Nenners, mit dem der Zähle multipliziert wird, sollte dann unendlich groß werden, oder?


gruß, KaWu

        
Bezug
Nenner wird unendlich klein: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Fr 23.04.2010
Autor: fred97

Alles richtig

FRED

Bezug
        
Bezug
Nenner wird unendlich klein: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Fr 23.04.2010
Autor: abakus


> Hallo!
>  
> Ich habe hier folgende Funktionssschar: [mm]f_k(x) = \frac{2x-k}{(x+k)^2}[/mm]
>  
> Nun möchte ich das Verhalten von [mm]f_k(x)[/mm] an seiner
> Definitionslücke -k untersuchen:
>  
> Der Grenzwert [mm]\lim_{x\nearrow -k} \left(\frac{2x-k}{(x+k)^2}\right)[/mm]
> ist gesucht. Wie komme ich nun an diesen Grenzwert? Der
> Zähler grenzt gegen -3k und der Nenner wird unendlich
> klein.
>  
> Darf ich annehmen, dass der Grenzwert deswegen [mm]\infty[/mm] ist?
> Der Nenner wird schließlich unendlich klein und das
> Inverse Element dieses Nenners, mit dem der Zähle
> multipliziert wird, sollte dann unendlich groß werden,
> oder?

Ja, aber beachte folgenden Sonderfall:
Für k=0 ist der Grenzwert bei Annähreung von links anders als bei Annäherung von rechts (plus oder minus unendlich).
Gruß Abakus

>  
>
> gruß, KaWu


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de