www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Newton-Verfahren
Newton-Verfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Sa 12.05.2012
Autor: Mathe-Lily

Aufgabe
Gegeben sei das nichtlineare Gleichungssystem
[mm] x_{1} [/mm] + 2 [mm] x_{2} [/mm] = 3
4 [mm] x_{1} [/mm] + [mm] (x_{2})^{2} [/mm] = 5.
Bestimmen Sie mit dem Newton-Verfahren eine Näherungslösung für die Lösung (1, [mm] 1)^{t}, [/mm] so dass der Fehler in der [mm] ||v||_{2} [/mm] - Norm kleiner als [mm] 10^{-3} [/mm] ist. dAbei sei (0, [mm] 0)^{t} [/mm] der Startwert. Geben Sie einen Startwert an, für den das Newtonverfahren gegen die zweite Lösung konvergiert.

Hallo!
Irgendwie blicke ich hier gar nicht durch, denn für das Newton-Verfahren brauchen wir ja eine Abbildung. Die könnten wir in ja auch in Form einer Matrix haben, dafür bräuchten wir aber doch ein lineares Gleichungssystem, oder?
Also müssten wir das nicht-lineare GS in ein lineares umwandeln...
Ich hab zuerst mal die 2. Lösung berechnet: [mm] z_{2} [/mm] = (-11, [mm] 7)^{t} [/mm]
Aber was jetzt?

Wäre toll, wenn jemand mir einen Denkanstoß geben würde!
Grüßle, Lily

        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Sa 12.05.2012
Autor: Gonozal_IX

Hallo Lily,

mit dem Newtonverfahren suchst du da eigentlich Nullstellen von Funktionen.
Überlegen wir mal, wie wir dein Gleichungssystem so umstellen können, dass wir faktisch nach Nullstellen suchen.... na irgendwie ist das ja schon fast trivial:

[mm] $x_1 [/mm] - [mm] 2x_2 [/mm] - 3 = 0$
[mm] $4x_1 [/mm] + [mm] x_2^2 [/mm] - 5 = 0$

Folglich suchst du nun also eine Nullstelle der Funktion:

[mm] $f(x_1,x_2) [/mm] = [mm] \vektor{x_1 - 2x_2 - 3 \\ 4x_1 + x_2^2 - 5}$ [/mm]

Startwert etc ist dir ja alles gegeben. Na dann mal los!

MFG,
Gono.

Bezug
                
Bezug
Newton-Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:49 Mi 16.05.2012
Autor: Mathe-Lily

hm... hätte ich auch selber drauf kommen können/sollen :D
Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de