www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Newton-Verfahren - Berechnung der p-ten Wurzel
Newton-Verfahren - Berechnung der p-ten Wurzel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren - Berechnung der p-ten Wurzel: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:14 Di 18.05.2004
Autor: baddi

Ups. Schluck. Herber Rückschlag. Mal wieder eine Aufgabe zum Gehirn parken und neu formatieren ;)

Also ich soll mittels Newton-Verfahren (sehr schön beschrieben in AL1 Forster) soll man berechnen bzw. rekursiv die Folge definieren.
[m]p,n \in \IN[/m] [mm] \wedge[/mm]  [m]x, x_0 \in \IR \wedge x, x_0 > 0[/m]
[m]x_n := \left( 1 + \bruch{1}{p} \right)x_{n-1} + \bruch {c}{p(x_{n-1})^{p-1})} [/m]
Das war vermutlich die Folge. Oder war das [m]x_n[/m] jetzt ein Schnittpunkt an der x-Achse (Newton-Verfahren - Anschaulich gesprochen ?).

Ich soll zeigen, das
[m](i) (x_n)^p \ge c [/m] für alle [m]n \in \IN [/m]
BTW. Wie macht man den den für alle Quantifizierer ?

Ich kapiere wie das Newton-Verfahren funktioniert, aber sonst ...
Muss ich da jetzt ne Ableitung machen ?
Wie ist der Lösungsweg. Wo lange gehts zum Bahnhof ;) Der letzte Satz ist aus dem Film "Ein himmlischer Teufel" mit Roberto Benini (sehr lustig !)

        
Bezug
Newton-Verfahren - Berechnung der p-ten Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Di 18.05.2004
Autor: Marc

Hallo baddi,

> Also ich soll mittels Newton-Verfahren (sehr schön
> beschrieben in AL1 Forster) soll man berechnen bzw.
> rekursiv die Folge definieren.
>  [m]p,n \in \IN[/m] [mm] \wedge[/mm]  [m]x, x_0 \in \IR \wedge x, x_0 > 0[/m]
>  [m]x_n := \left( 1 + \bruch{1}{p} \right)x_{n-1} + \bruch {c}{p(x_{n-1})^{p-1})}[/m]
>  
> Das war vermutlich die Folge. Oder war das [m]x_n[/m] jetzt ein
> Schnittpunkt an der x-Achse (Newton-Verfahren - Anschaulich
> gesprochen ?).

Nein, das steckt ja schon in dieser Formeln drin. Bei fortgesetzter Anwendung sollte sie dann gegen die p-te Wurzel konvergieren.
Die Iterationsformel definiert dann sozusagen eine Folge [mm] $x_1,x_2,x_3,\ldots$ [/mm] deren Grenzwert die Nullstelle einer Funktion ist (sein kann).

> Ich soll zeigen, das
>  [m](i) (x_n)^p \ge c[/m] für alle [m]n \in \IN[/m]
>  BTW. Wie macht man
> den den für alle Quantifizierer ?

Welche Quantifizierer meinst du?

Ist denn die Funktion $f$ gegeben, auf die du die Newton-Iterationsformeln anwenden sollst bzw. ist dir die Funktion klar?
Ich meine die Funktion, die man hier einsetzt (und die oben offenbar eingesetzt wurde):

[mm] $x_n=x_{n-1}-\bruch{f(x_{n-1})}{f'(x_{n-1})}$ [/mm]

> Ich kapiere wie das Newton-Verfahren funktioniert, aber
> sonst ...
>  Muss ich da jetzt ne Ableitung machen ?

Die Ableitung der Funktion steckt ja auch schon in deiner obersten Formel drin, von daher würde ich sagen: Nein. Es könnte aber sein, dass man --um (i) zu zeigen-- eine Ableitung benutzen muß (weiß ich aber nicht), deswegen kann ich es nicht sagen, ob du eine brauchst...

Nun, ich hoffe, jetzt sind erstmal deine Verständisschwierigkeiten geklärt und du kannst es nochmal versuchen. Gib' ruhig mal Bescheid, wie weit du kommst.

Viele Grüße,
Marc

Bezug
                
Bezug
Newton-Verfahren - Berechnung der p-ten Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Mi 19.05.2004
Autor: baddi

Danke, ich war wie immer viel zu langsam mit den Aufgaben.
Hab nur 20% geschafft und muss morgen alles abgeben.
Außerdem müsste ich jetzt noch ein Informatik- Übungsblatt anfangen. Aber ich muss wieder um 7 raus. Also lasse ich das ausfallen.
Das muss alles besser werden, weil wenn man nicht alles zusammen 50% richtig hat darf man nicht zur Klausur und ich bin schon im zweiten Semester und mache erst LA1, AL1 außerdem noch Info2 und Alg.D. Also habe ich 4 Übungszettel je Woche. Für jeden Zettel brauche ich einige Stunden. Tja. Nicht immer gerade easy.
Ich muss das besser organisieren...
Wünsch Euch was & Gute Nacht
Ich werd dann morgen noch mal hier nachlesen hab jetzt keinen Kopf mehr.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de