Newton Verfahren < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:36 Sa 29.04.2006 | Autor: | DeusRa |
Aufgabe | Wie betrachte die Funktion [mm] f:[\bruch{\pi}{3},\bruch{\pi}{4}]\to \IR [/mm] mit x [mm] \mapsto [/mm] $2*cos(x)-x²$.
(a) Zeigen Sie, dass das Newton-Verfahren in diesem Fall konvergiert. |
Tag,
das ist ein Teil einer Aufgabe die wir in Analysis II bekommen haben.
Ich weiß leider nicht wie man das lösen soll.
Wäre somit um jeden Tipp dankbar.
Was muss ich hier machen ?
Kennt jemand eine gute inet-Seite mit solchen Aufgabenstellungen ??
Danke schon mal im Voraus.
|
|
|
|
Status: |
(Antwort) noch nicht fertig | Datum: | 12:35 So 30.04.2006 | Autor: | pi-roland |
Hallo!
Das Newton-Verfahren ist ein Lösungsverfahren zum Finden einer Nullstelle mittels angelegter Tangente. So hab ich es jedenfalls in Erinnerung.
Ist die Funktion also streng monoton, dann konvergiert das Verfahren auf jeden Fall.
Also viel Spaß beim Ableiten (was in diesem Fall relativ einfach ist),
Roland.
|
|
|
|
|
Hallo Roland,
Monotonie reicht hier nicht. Als Bsp. kannst Du Dir ja das Konvergenzverhalten für die streng monotone Funktion [mm] \tan^{-1}(x) [/mm] mit der bekannten Nst. [mm] x_0=0 [/mm] anschauen, wenn die eingesetzten Startwerte von 0 weit genug entfernt sind konvergiert da nichts.
viele Grüße
mathemaduenn
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:00 So 30.04.2006 | Autor: | Infinit |
Hallo DeusRa,
als ein lokal agierendes Verfahren hängt die Konvergenz des Newton-Verfahrens von der Art der Funktion ab, für die die Nullstelle gesucht wird, wie auch von der Wahl des Anfangswertes. Danach richtet es sich, ob das Verfahren überhaupt konveriert und falls ja, wie schnell. Es gibt Funktionen, bei denen beispielsweise die Iteration zwischen zwei Werten hin- und herspringt. Bei Deiner Funktion dürfte es nicht ganz so wild sein, das vorgegebene Startintervall liefert für $ [mm] \bruch{\pi}{3} [/mm] $ einen negativen Funktionswert, für $ [mm] \bruch{\pi}{4} [/mm] $ einen positiven Wert, dazwischen muss also eine Nullstelle liegen.
Verschiedene Methoden zum Nachweis der Konvergenz des Newton-Verfahrens findest Du beispielsweise in
www.oelinger.de/maria/numerik/doc/num17.doc
Viele Grüße,
Infinit
|
|
|
|