www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - Newton Verfahren
Newton Verfahren < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton Verfahren: Aufgabe
Status: (Frage) überfällig Status 
Datum: 21:40 Do 08.06.2006
Autor: mario.braumueller

Aufgabe
Implementieren Sie in Matlab das Newton-Verfahren für nicht-lineare Gleichungssysteme mit F( [mm] x_{1}, x_{2}) [/mm] = 0 jeweils für (je 10 Punkte):

a) die gegebene Funktion

F(x,y) =  [mm] \vektor{f_{1}(x,y) \\ f_{2}(x,y)} [/mm]

mit

[mm] f_{1} [/mm] = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + y - 1 = 0
[mm] f_{2} [/mm] = [mm] x^{2} [/mm] - [mm] y^{2} [/mm] + x - y - 2 = 0

mit dem Startwert [mm] x_{0} [/mm] = (0; 0).

b) die Funktion

                               F( [mm] x_{1}, x_{2}) [/mm] =  [mm] \vektor{f_{1}( x_{1}, x_{2}) \\ f_{2}( x_{1}, x_{2})} [/mm]

wobei

[mm] f_{1}( x_{1}, x_{2}) [/mm] = [mm] x_{1}sin(x_{2}) [/mm] -  [mm] x_{1}x_{2}cos(x_{2}) [/mm] - 1
[mm] f_{2}( x_{1}, x_{2}) [/mm] = [mm] x_{1}cos(x_{2}) [/mm] +  [mm] x_{1}x_{2}sin(x_{2}) [/mm] - [mm] x_{1} [/mm] - 1

Beginnen Sie mit dem Startwert (2, 1.2).
Berechnen Sie bei a) und b) jeweils die ersten 5 iterierten Schritte [mm] x^{1}.....x^{5}. [/mm] Das Aufrufverfahren
für Newton soll dabei die folgende Form haben:

Hinweis: Die Funktion und die Jacobi-Matrix implementiert man am besten als seperate Funktionen
z.B
function wert = F(x)                   function wert = dF(x)
wert(1) = ...                               wert(1,1) = ... [mm] df_{1} [/mm] / [mm] dx_{1} [/mm] bis
wert(2) = ...                               wert(2,2) = ... [mm] df_{2} [/mm] / [mm] dx_{2} [/mm]

Hallo,

wir haben diese Aufgabe auf einem Übungsblatt gestellt bekommen. Leider habe ich noch nie mit Matlab gearbeitet und habe deswegen auch nicht die geringste Ahnung wie dieses Problem zu lösen ist. Ich hoffe, dass mir hier irgendjemand helfen kann, dies zu lösen.

Vielen Dank im Voraus


Gruß
Mario


-------------------------------------------------


Ich habe diese Frage in keinem anderen Forum im Netz gestellt.

        
Bezug
Newton Verfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 09.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Newton Verfahren: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:18 Mo 15.06.2009
Autor: toggo.fan

Hallo :)

Ist ja witzig ;)
Wir haben jetzt fast genau dieselbe Aufgabe gestellt bekommen (zumindest den a)-Teil) und ich habe genauso wenig Ahnung wie du damals  :)

Hast du denn mittlerweile eine Lösung für die Aufgabe? Und wenn ja, kannst du mir dann weiter helfen?

Bezug
                
Bezug
Newton Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 15.06.2009
Autor: Frasier

Zu Aufgabe 1:
1: f1=@(x,y) x^2+y^2+y-1;
2: f2=@(x,y) x^2-y^2+x-y-2;
3:
4: f1x=@(x) 2*x;
5: f1y=@(y) 2*y+1;
6: f2x=@(x) 2*x+1;
7: f2y=@(y) -2*y-1;
8:
9: x=[0;0];
10: i=0;
11: epsilon=1e-6
12: while norm([f1(x(1),x(2));f2(x(1),x(2))]) > epsilon
13:     sol=[f1x(x(1)),f1y(x(2));f2x(x(1)),f2y(x(2))]\-[f1(x(1),x(2));f2(x(1),x(2))];
14:     x(1)=x(1)+sol(1);
15:     x(2)=x(2)+sol(2);
16:     disp(['Iteration: ' num2str(i)]);
17:     disp(['Lösung   : ' num2str(x','%1.7f\t')]);
18:     i=i+1;
19: end

Kommt ihr damit weiter?

lg
F.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de