www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Newton mit inverser Jacobimatr
Newton mit inverser Jacobimatr < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton mit inverser Jacobimatr: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:52 Mo 04.02.2008
Autor: loop26

Aufgabe
[mm] 3x^2-y^2=0 [/mm]
[mm] 3xy^2-x^3=1 [/mm]

a)zeige dass x=0.6, y=0.8 grobe Näherungen sind
b)verbessere Näherung 1x mit geeignetem Verfahren  

Hallo zusammen,

ich bin gerade dabei diese Aufgabe zu lösen. Die Vorgabe ist dass es mit Newton bzw. mit Hilfe der inversen Jacobimatrix gelöst werden muss.

Meine Vorgehensweise bis jetzt: auf F(x)=0 formen

[mm] F{x\choose y}={3x^2-y^2 \choose 3xy^2-x^3-1} [/mm]
(das x vorne bei F muss auch in die Klammern rein, geht aber irgendwie nicht!)

So, nun kommt die Vorgabe
X_neu = X_alt - F'(X_alt)^-1 F(X_alt)

Also ist dieses F'(X_alt) die sogenannte Jacobimatrix die zu berechnen ist.

Sieht bei mir dann so aus:  [mm] x=x_1, y=x_2 [/mm]

F'(X_alt)= [mm] \begin{pmatrix} \frac{\partial F1}{x_1} & \frac{\partial F1}{x_2} \\ \frac{\partial F2}{x_1} & \frac{\partial F2}{x_2} \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 6x_1 & -2x_2 \\ 3x_2^2-3x_1^2 & 6x_1x_2 \end{pmatrix} [/mm]

Nun weiss ich nicht mehr wie es weiter geht. Wie soll ich diese Matrix jetzt in die Vorgabeformel von oben einbinden?
Muss erstmal die inverse von der Jacobi bilden oder? Hat jemand schon so etwas gemacht?

Bin für jeden Tipp dankbar!

Cheers,
loop26



        
Bezug
Newton mit inverser Jacobimatr: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 04.02.2008
Autor: ullim


> [mm]3x^2-y^2=0[/mm]
>  [mm]3xy^2-x^3=1[/mm]
>  
> a)zeige dass x=0.6, y=0.8 grobe Näherungen sind
>  b)verbessere Näherung 1x mit geeignetem Verfahren
> Hallo zusammen,
>  
> ich bin gerade dabei diese Aufgabe zu lösen. Die Vorgabe
> ist dass es mit Newton bzw. mit Hilfe der inversen
> Jacobimatrix gelöst werden muss.
>  
> Meine Vorgehensweise bis jetzt: auf F(x)=0 formen
>  
> [mm]F{x\choose y}={3x^2-y^2 \choose 3xy^2-x^3-1}[/mm]
> (das x vorne bei F muss auch in die Klammern rein, geht
> aber irgendwie nicht!)
>  
> So, nun kommt die Vorgabe
>  X_neu = X_alt - F'(X_alt)^-1 F(X_alt)
>  
> Also ist dieses F'(X_alt) die sogenannte Jacobimatrix die
> zu berechnen ist.
>  
> Sieht bei mir dann so aus:  [mm]x=x_1, y=x_2[/mm]
>  
> F'(X_alt)= [mm]\begin{pmatrix} \frac{\partial F1}{x_1} & \frac{\partial F1}{x_2} \\ \frac{\partial F2}{x_1} & \frac{\partial F2}{x_2} \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} 6x_1 & -2x_2 \\ 3x_2^2-3x_1^2 & 6x_1x_2 \end{pmatrix}[/mm]
>  

Die Matrix F' musst Du invertieren und noch Startwerte für die Iteration vorgeben.

Z.B. [mm] X_{alt}=\vektor{1 \\ 1} [/mm] und dann die Iteration durchführen.

> Nun weiss ich nicht mehr wie es weiter geht. Wie soll ich
> diese Matrix jetzt in die Vorgabeformel von oben einbinden?
> Muss erstmal die inverse von der Jacobi bilden oder? Hat
> jemand schon so etwas gemacht?
>  
> Bin für jeden Tipp dankbar!
>  
> Cheers,
>  loop26
>  
>  


mfg ullim

Bezug
                
Bezug
Newton mit inverser Jacobimatr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Mo 04.02.2008
Autor: loop26

Hallo ullim, danke für die Antwort.
Woher weiss ich welches [mm] x_0 [/mm] bzw. [mm] X_{alt} [/mm] ich nehme? Also angenommen ich nehme jetzt hier das [mm] {1\choose 1} [/mm]

das hätte ich so etwas:

[mm] X_{neu} [/mm] = [mm] {1\choose 1} [/mm] - [mm] F'(X_{alt)}^-1 {2\choose 1} [/mm]
(hier bin ich mir nicht sicher ob das [mm] F(X_{alt}) [/mm] stimmt)

und dann noch die invertierte Jacobimatrix eingesetzt:
[mm] X_{neu} [/mm] = [mm] {1\choose 1} [/mm] - [mm] \frac{1}{(6x_1 6x_1x_2)+(2x_2(3x_2^2-3x_1^2))}$ \begin{pmatrix} 6x_1x_2 & 2x_2 \\ -3x_2^2-3x_1^2 & 6x_1 \end{pmatrix} [/mm] $ [mm] {2\choose 1} [/mm]


So, nun komm ich hier durcheinander; wie kann man das alles auflösen oder gibt es einen einfacheren Weg?

Danke


Bezug
                        
Bezug
Newton mit inverser Jacobimatr: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mo 04.02.2008
Autor: ullim

Hi,


> Woher weiss ich welches [mm]x_0[/mm] bzw. [mm]X_{alt}[/mm] ich nehme? Also
> angenommen ich nehme jetzt hier das [mm]{1\choose 1}[/mm]
>  

Der Startwert muss im Prinzip schon hinreichend nahe der gesuchten Lösung gewählt werden. Dazu lohnt es sich schon mal eine Skizze anzufertigen. Es gibt ohne weiteres Startwerte, für das Verfahren nicht konvergiert.

> das hätte ich so etwas:
>  
> [mm] X_{neu} [/mm] = [mm] {1\choose 1} [/mm] - [mm] {F'(X_{alt})}^{-1} {2\choose 1} [/mm]
>  (hier bin ich mir nicht sicher ob das [mm]F(X_{alt})[/mm] stimmt)
>  
> und dann noch die invertierte Jacobimatrix eingesetzt:
>  [mm]X_{neu}[/mm] = [mm]{1\choose 1}[/mm] - [mm]\frac{1}{(6x_16x_1x_2)+(2x_2(3x_2^2-3x_1^2))}[/mm] [mm]\begin{pmatrix} 6x_1x_2 & 2x_2 \\ -3x_2^2-3x_1^2 & 6x_1 \end{pmatrix}[/mm] [mm]{2\choose 1}[/mm]
>  
>
> So, nun komm ich hier durcheinander; wie kann man das alles
> auflösen oder gibt es einen einfacheren Weg?
>  

Das [mm] X_{neu} [/mm] kannst Du ausrechnen und im nächsten Schritt ersetzt Du [mm] X_{alt} [/mm] durch [mm] X_{neu} [/mm] und führst die gleiche Rechnung mit den geänderten Werten nochmals aus, und zwar solange, bis sich [mm] X_{neu} [/mm] und [mm] X_{alt} [/mm] sich nicht mehr viel unterscheiden. Damit konvergiert dann das Verfahren gegen die Lösung. Beachte aber,

[mm] {2\choose 1}=F(X_{alt}), [/mm] d.h. auch hier muss [mm] X_{alt} [/mm] durch [mm] X_{neu} [/mm] ersetzt werden.

mfg ullim

Bezug
                                
Bezug
Newton mit inverser Jacobimatr: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:49 Mo 04.02.2008
Autor: loop26

Hi,

soweit ist es klar. Nun um dieses [mm] X_{neu} [/mm] muss ich die Werte [mm] x_1 [/mm] und [mm] x_2 [/mm] wissen. Sind es dann im ersten Schritt die Werte aus [mm] x_0 [/mm] ? Und als Ergebnis soll dann auch ein Vektor rauskommen oder?

Vielen Dank für Deine Antworten!





Bezug
                                        
Bezug
Newton mit inverser Jacobimatr: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 06.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de