www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Newtonsches Näherungsverfahren
Newtonsches Näherungsverfahren < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newtonsches Näherungsverfahren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:38 Di 09.05.2006
Autor: manuela1081

Aufgabe
Gegeben ist die Funktion f mit f(x)= [mm] x^4-2x^2-x+0,5; [/mm] xER.
Berechnen Sie eine Nullstelle von f mit dem Newton Verfahren. Beginnen Sie mit dem Startwert xo=1. Warum scheitert Ihr Vorgehen?

Diese Aufgabe  ist wahrscheinlich ganz einfach, aber leider komme ich nicht drauf. Eine Freundin hat mich um Hilfe gebeten, aber ich kenne mich mit den Bedingungen des Newton Verfahrens nicht so sehr aus und finde keine passenden Erläuterungen. Wenn ich die Formel verwende, dann weiche ich immer weiter von der Nullstelle weg. Bitte helft mir, ist sehr dringend.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Newtonsches Näherungsverfahren: anschaulich
Status: (Antwort) fertig Status 
Datum: 21:04 Di 09.05.2006
Autor: Disap

Hallo manuela1081& herzlich [willkommenmr]
Schau dir mal diese Animations zum []Newton-Naeherungsverfahren an.


> Gegeben ist die Funktion f mit f(x)= [mm]x^4-2x^2-x+0,5;[/mm] xER.
>  Berechnen Sie eine Nullstelle von f mit dem Newton
> Verfahren. Beginnen Sie mit dem Startwert xo=1. Warum
> scheitert Ihr Vorgehen?
>  Diese Aufgabe  ist wahrscheinlich ganz einfach, aber
> leider komme ich nicht drauf. Eine Freundin hat mich um
> Hilfe gebeten, aber ich kenne mich mit den Bedingungen des
> Newton Verfahrens nicht so sehr aus und finde keine
> passenden Erläuterungen. Wenn ich die Formel verwende, dann
> weiche ich immer weiter von der Nullstelle weg. Bitte helft
> mir, ist sehr dringend.

[Dateianhang nicht öffentlich]

Zwei von drei Extremstellen liegen bei [mm] x\approx [/mm] -0.27 und [mm] x\approx [/mm] -0.84
Von der Nullstelle ist man mit Werten für x<-0.27 (das gilt also auch für [mm] x_0) [/mm] zu weit weg, denn durch das (auch) Tangentenverfahren, kommen wir über die Huckel der Extremstellen nicht drüber. Das sollte auch die oben genannte Animation klären.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

MfG!
Disap

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
        
Bezug
Newtonsches Näherungsverfahren: Konvergenzkriterium beim Newto
Status: (Antwort) fertig Status 
Datum: 22:00 Di 09.05.2006
Autor: Wolferl

Hi Manuela,

für das Newtonverfahren gibt es auch ein Kriterium, mit dem sich prüfen lässt, ob das Verfahren für einen bestimmten Startwert konvergiert. Es muss gelten:

[mm]\left| f''(x_0) * f(x_0) \right| < \left| f'(x_0) \right|^2[/mm]

Wenn Du für [mm]x_0 = 1[/mm] einsetzt, wirst Du feststellen, dass dieser Startwert das Kriterium nicht erfüllt.

Liebe Grüße, Wolferl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de