www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Nicht lineare PDGL
Nicht lineare PDGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nicht lineare PDGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Mo 17.12.2012
Autor: L0re

Aufgabe
Es sei folgende Gleichung in [mm] $R^2$ [/mm] gegeben
[mm] \operatorname{exp}(\partial^3_t u) + \sin (x)\partial^2_t u - 2\cos (\partial_x u) \partial_t u + 3tu \partial^2_t u = 0 [/mm], mit Anfangsbedingungen [mm] u(x,0) = u_0(x), \partial_t u(x,0) = u_1(x), \partial^2_t u(x,0) = u_2(x) [/mm].
a) Zeige, dass die Ebene $t = 0$ für die Gleichung nicht charakteristisch ist.
b) Zeige wie man diese Gleichung auf ein quasi-lineares System erster Ordnung, mit Koeffizienten unabhängig von $t$, reduzieren kann.

Hallo,
ich sitze gerade an dieser (für mich) besonders schwierigen Übungsaufgabe. Es ist die erste wirklich nicht lineare (also auch nicht quasilineare oder semilineare) PDGl, mit der ich arbeite und daher kommt vermutlich meine Unsicherheit.

Da ich mich bisher auf Aufgabenteil a) konzentriert habe, würde ich zu b) erstmal lieber nichts sagen. Grundsätzlich ist mein Ansatz die Gleichung erst zu linearisieren um dann hoffentlich eine Definition aus meinem Skript anwenden zu können:
Die Fläche, die durch [mm] $\phi(x_1,...,x_n) [/mm] = 0$ gegeben ist, ist charakteristisch am Punkt [mm] $\hat [/mm] x$, wenn [mm] $\phi(\hat [/mm] x) = 0$ und
[mm]a_{ij}\frac{\partial \phi}{\partial x_i}(\hat x) \frac{\partial \phi}{\partial x_j}(\hat x) = 0[/mm].

Mein bester Versuch beim linearisieren war mit
$u(x,t) = t/2 + [mm] \epsilon [/mm] w(x,t)$, wobei $t/2$ eine geratene Lösung der PDGL ist. Anscheinend wird normalerweile eine konstante Lösung verwendet, in diesem Fall nur leider nicht möglich.
Meine linearisierte Gleichung lautet dann:
[mm] \frac{3}{2}t^2\partial^2_x w(x,t) + sin(x)\partial^2_t w(x,t) - \partial_x w(x,t) - 2\partial_t w(x,t) + 1 = 0[/mm]

Wende ich nun die Definition an, ergibt sich
[mm] \frac{3}{2}t^2\frac{\partial t}{\partial x}\frac{\partial t}{\partial x}+ sin(x)\frac{\partial t}{\partial t}\frac{\partial t}{\partial t} = sin(x) [/mm]
Da ich hier einen Term erwarten würde der stets ungleich null ist, zweifle ich sehr an dem Ergebnis.

An dieser Stelle hänge ich nun leider, ein anderer Ansatz ist mir bisher nicht eingefallen und das obige Resultat stellt mich kaum zufrieden.
Ich würde mich über jegliche Hilfe/Gedankenanstöße sehr freuen!

Mfg
Lore

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nicht lineare PDGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Fr 21.12.2012
Autor: MathePower

Hallo L0re,


[willkommenmr]


> Es sei folgende Gleichung in [mm]R^2[/mm] gegeben
>  [mm]\operatorname{exp}(\partial^3_t u) + \sin (x)\partial^2_t u - 2\cos (\partial_x u) \partial_t u + 3tu \partial^2_t u = 0 [/mm],


[mm]\partial^{3}_{t}u[/mm] kann doch bedeuten:

[mm]\partial^{3}_{t}u=\left(\bruch{\partial u}{\partial t\right)^{3}[/mm]

oder

[mm]\partial^{3}_{t}u=\bruch{\partial^{3} u}{\partial t^{3}[/mm]


> mit Anfangsbedingungen [mm]u(x,0) = u_0(x), \partial_t u(x,0) = u_1(x), \partial^2_t u(x,0) = u_2(x) [/mm].
>  
> a) Zeige, dass die Ebene [mm]t = 0[/mm] für die Gleichung nicht
> charakteristisch ist.
>  b) Zeige wie man diese Gleichung auf ein quasi-lineares
> System erster Ordnung, mit Koeffizienten unabhängig von [mm]t[/mm],
> reduzieren kann.
>  Hallo,
>  ich sitze gerade an dieser (für mich) besonders
> schwierigen Übungsaufgabe. Es ist die erste wirklich nicht
> lineare (also auch nicht quasilineare oder semilineare)
> PDGl, mit der ich arbeite und daher kommt vermutlich meine
> Unsicherheit.
>
> Da ich mich bisher auf Aufgabenteil a) konzentriert habe,
> würde ich zu b) erstmal lieber nichts sagen.
> Grundsätzlich ist mein Ansatz die Gleichung erst zu
> linearisieren um dann hoffentlich eine Definition aus
> meinem Skript anwenden zu können:
>  Die Fläche, die durch [mm]\phi(x_1,...,x_n) = 0[/mm] gegeben ist,
> ist charakteristisch am Punkt [mm]\hat x[/mm], wenn [mm]\phi(\hat x) = 0[/mm]
> und
>  [mm]a_{ij}\frac{\partial \phi}{\partial x_i}(\hat x) \frac{\partial \phi}{\partial x_j}(\hat x) = 0[/mm].
>  
> Mein bester Versuch beim linearisieren war mit
> [mm]u(x,t) = t/2 + \epsilon w(x,t)[/mm], wobei [mm]t/2[/mm] eine geratene
> Lösung der PDGL ist. Anscheinend wird normalerweile eine
> konstante Lösung verwendet, in diesem Fall nur leider
> nicht möglich.
>  Meine linearisierte Gleichung lautet dann:
>  [mm]\frac{3}{2}t^2\partial^2_x w(x,t) + sin(x)\partial^2_t w(x,t) - \partial_x w(x,t) - 2\partial_t w(x,t) + 1 = 0[/mm]
>  
> Wende ich nun die Definition an, ergibt sich
>  [mm]\frac{3}{2}t^2\frac{\partial t}{\partial x}\frac{\partial t}{\partial x}+ sin(x)\frac{\partial t}{\partial t}\frac{\partial t}{\partial t} = sin(x)[/mm]
>  
> Da ich hier einen Term erwarten würde der stets ungleich
> null ist, zweifle ich sehr an dem Ergebnis.
>  
> An dieser Stelle hänge ich nun leider, ein anderer Ansatz
> ist mir bisher nicht eingefallen und das obige Resultat
> stellt mich kaum zufrieden.
>  Ich würde mich über jegliche Hilfe/Gedankenanstöße
> sehr freuen!
>  


Verwende zum linearisieren bekannte Taylorreihen.


> Mfg
>  Lore
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Nicht lineare PDGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:33 Sa 22.12.2012
Autor: L0re

Vielen Dank für deine Hilfe MathePower =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de