www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Nichtlineares Gleichungssystem
Nichtlineares Gleichungssystem < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtlineares Gleichungssystem: Tipp
Status: (Frage) überfällig Status 
Datum: 20:56 Di 16.06.2015
Autor: Johannes5

Hallo!

Ich hoffe, dass ich für meinen Eintrag den richtigen Ort gefunden habe.

Im Zuge meiner Masterarbeit bin ich ein paar Systemen von nichtlinearen Gleichungen begegnet.
In diesem Zusammenhang sind für mich folgende Punkte relevant:

1.)
Die Frage nach der Existenz einer eindeutigen Lösung.
Bzw. da das ja immer von der spezifischen Art der Gleichungen abhängt: Gibt es geeignete Verfahren, um ein konkretes nichtlineares Gleichungssystem daraufhin zu untersuchen, wie viele Lösungen es gibt (bzw. ob es nur eine einzige geben kann)?

2.)
a) Ist es u.U. möglich eine Aussage darüber zu treffen, ob es eine eindeutige Lösung gibt, wenn der Definitionsbereich der Lösungsvariablen eingeschränkt wird?
b) Und in diesem Zusammenhang: Welche (gebräuchlichen) Vorgehensweisen gibt es, um bei numerischen Lösungsverfahren Bedingungen an die Lösungsvariablen zu stellen?

Leider ist mein mathematisches Wissen (und Verständnis) zu diesem Themengebiet rudimentär.
Ich wäre daher insbesondere auch für Hinweise zu Literatur, die diese Fragestellungen behandelt, sehr dankbar. "Einstiegsliteratur", sofern vorhanden, wäre dabei natürlich besonders gerne gesehen...;-)

So, ich hoffe, dass meine Fragen nicht zu wirr sind und ihr mit ihnen überhaupt irgendetwas anfangen könnt.
Für alle Fälle versuche ich meine Probleme noch einmal an einem konkreten Beispiel zu veranschaulichen:

Gegeben sei ein Gleichungssystem mit n Gleichungen (und n Lösungsvariablen) folgender Gestalt:

[mm] \fedonFi(x)=1/a_1*(1/a_2(b_1i-(a_3-exp(-a_4(a_5-sum(x_i,i=1,n)))))*(b_2i-x_i)-b_3i)-x_i=0 [/mm]
[mm] \fedoff [/mm]


Wobei [mm] \fedon [/mm] i=1,..,n [mm] \fedoff [/mm]
und  [mm] \fedon [/mm] a1,...,a5 = [mm] const\fedoff [/mm]  sowie [mm] \fedon [/mm] b1i,...,b3i = const.
[mm] \fedoff [/mm]

Für mich wäre es jetzt genial zu wissen, ob es Möglichkeiten gibt, (in Abhängigkeit der Konstanten) Aussagen darüber zu treffen, ob und, falls ja, wie viele Lösungen das Gleichungssystem hat.
Ferner würde ich die Lösungen gerne auf positive [mm] \fedon [/mm] x [mm] \fedoff [/mm] beschränken und dazu noch für jedes [mm] \fedon x_i\fedoff [/mm] eine individuelle obere Grenze des Definitionsbereich festlegen.


Für Hinweise (wie gesagt gerne auch geeignete Literatur!), wie ich einem derartigen Problem begegnen könnte, wäre ich sehr dankbar!

Vielen Dank schon einmal im Voraus!!

Johannes


P.S: Als Hinweis zum Cross-Posting: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/default3.html?call=viewtopic.php?topic=125646&ref=http%3A%2F%2Fwww.google.fr%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D12%26cad%3Drja%26uact%3D8%26ved%3D0CCgQFjABOApqFQoTCJyGkJ3lj8YCFSaC2wodU3cA6w

        
Bezug
Nichtlineares Gleichungssystem: Problem umgangen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:53 Fr 19.06.2015
Autor: Johannes5

Hallo noch einmal!
Also, zwar habe ich das Problem noch nicht wirklich gelöst, aber ich habe es, so denke ich, erfolgreich umgangen.
In diesem Sinne bin ich natürlich nach wie vor an einer Beantwortung interessiert, allerdings ist sie für meine Masterarbeit (voraussichtlich) nicht mehr relevant, so dass es in jedem Fall nicht mehr dringend ist.
Vielen Dank in jedem Fall!
Johannes

Bezug
        
Bezug
Nichtlineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Fr 19.06.2015
Autor: M.Rex

Hallo Johannes.

Deine Gleichungen sind - fürchte ich - nicht analytisch nach [mm] x_{i} [/mm] umstellbar, daher fällt ein Einsetzungsverfahren weg.

Ist folgendes gegeben?

[mm]F_{i}(x)=\frac{1}{a_1}\cdot{}\left(\frac{1}{a_2}\left(b_1i-\left(a_3-exp\left(-a_4\left(a_5-\sum\limits_{i=1}^{n}(x_i)\right)\right)\right)\right)\right)\cdot{}\left(b_2i-x_i\right)-b_3i\right)-x_i[/mm]

Was du versuchen könntest, ist eine Gleichungsdivision, nachdem du das alleinstehende [mm] x_{i} [/mm] auf die andere Seite gebracht hast, aber das habe ich nicht durchprobiert.

Alternativ bleibt ein numerisches Lösungsverfahren, wenn die Parameter bekannt sind.

Oder hast du evtl sogar eine rekursive Darstellung der [mm] F_{i}(x) [/mm] mit der du dann weiterrechnen kannst? Das ist in seltenen Fällen sogar einfacher, als mit der expliziten Darstellung zu rechnen.

Viel mehr Möglichkeiten sehe ich da gerade nicht.

Marius

Bezug
        
Bezug
Nichtlineares Gleichungssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 01.07.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de