www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Niemytzki-Raum regulär?
Niemytzki-Raum regulär? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Niemytzki-Raum regulär?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:03 So 20.09.2015
Autor: sissile

Aufgabe
Ich suche einen Beweis für das Resultat, dass der Niemytzki-Raum regulär [mm] (T_3 [/mm] + [mm] T_1) [/mm] ist. In meinen alten Skript ist es nur ohne Beweis vermerkt.
In Wiki hab ich dazu nur den Beriff vollst. regulär gefunden, denn wir aber nicht wirklich hatten.

Sei [mm] X=\{(x,y) \in \mathbb{R}^2 | y \ge 0 \} [/mm]
Wir geben für jedes p=(a,b) [mm] \in [/mm] X eine Umgebungsbasis an:
b>0: [mm] \mathcal{W}_p [/mm] := [mm] \{ B_{\epsilon} (p): 0 < \epsilon \le y\} [/mm]
b=0: [mm] \mathcal{W}_p [/mm] := [mm] \{ C_{\epsilon} (p): \epsilon>0 \} [/mm]
wobei [mm] C_{\epsilon} [/mm] (p) [mm] =\{q=(x,y) \in X| d(m,q) < \epsilon\} \cup \{(a,0)\} [/mm]  mit [mm] m=(a,\epsilon) [/mm]
Die entstehende Topologie heißt Niemytzki-Topologie.


Hallo
[mm] T_1 [/mm] : [mm] \forall x\not= [/mm] y [mm] \in \mathbb{R}: \exists [/mm] U, V offen: x [mm] \in [/mm] U, y [mm] \not\in [/mm] U , [mm] y\in [/mm] V, x [mm] \not\in [/mm] V

Sei x [mm] \not= [/mm] y [mm] \in \mathbb{R} [/mm]
[mm] x=(x_1, x_2), y=(y_1, y_2) [/mm]

1) Angenommen [mm] x_2, y_2> [/mm] 0
[mm] \epsilon:= \frac{d(x,y)}{3}, U=B_{\epsilon} [/mm] (x), [mm] V=B_{\epsilon} [/mm] (y)
So ist U [mm] \cap [/mm] V = [mm] \emptyset [/mm] da für z [mm] \in [/mm] U [mm] \cap [/mm] V gilt  3 [mm] \epsilon= [/mm] d(x,y) < d(x,z) + d(z,y) < 2 [mm] \epsilon [/mm] Widerspruch
Eine Umgebungsbasis ist insbesondere eine Umgebung und enthält jeweils eine offene Menge die x bzw. y enthält.
Aus [mm] T_2 [/mm] folgt [mm] T_1. [/mm]

2) Ang [mm] x_2, y_2 [/mm] =0
[mm] \epsilon:= \frac{d(x,y)}{3} [/mm]
[mm] U:=\{B_{\epsilon}(x_1, \epsilon))\} \cup\{(x_1, 0)\} [/mm]
[mm] V:=\{B_{\epsilon}(y_1, \epsilon))\} \cup\{(y_1,0)\} [/mm]
Sei z [mm] \in U\cap [/mm] V:
3 [mm] \epsilon =d((x_1,0),(y_1,0))=d((x_1, \epsilon), (y_1, \epsilon)) \le [/mm] d(z, [mm] (x_1, \epsilon)) [/mm] + d(z, [mm] (y_1, \epsilon)) \le [/mm] 2 [mm] \epsilon \ightarrow [/mm] Widerspruch
Eine Umgebungsbasis ist insbesondere eine Umgebung und enthält jeweils eine offene Menge die x bzw. y enthält.
Aus [mm] T_2 [/mm] folgt [mm] T_1. [/mm]

3) Ang [mm] x_2 [/mm] =0, [mm] y_2 [/mm] > 0
Dann wähle ich [mm] \epsilon:= \frac{d((x_1, y_2), (y_1, y_2))}{3} [/mm]
[mm] U:=\{B_{\epsilon}(x_1, \epsilon))\} \cup\{(x_1, 0)\} [/mm]
[mm] V:=\{B_{\epsilon}(y_1, y_2))\} [/mm]
Sei z [mm] \in U\cap [/mm] V:
3 [mm] \epsilon =d((x_1,y_2),(y_1,y_2))


[mm] T_3: \forall [/mm] x [mm] \forall [/mm] A abgeschlossen mit x [mm] \not\in [/mm] A [mm] \exists [/mm] U,V offen: U [mm] \cap [/mm] V [mm] \not= \emptyset: [/mm] x [mm] \in [/mm] U, A [mm] \subseteq [/mm] V

Sei A abgeschlossen [mm] \Rightarrow \mathbb{R} \setminus [/mm] A offen
Nach Proposition: [mm] \forall [/mm] y [mm] \in \mathbb{R}\setminus [/mm] A [mm] \exists [/mm] Q [mm] \in \mathcal{W}_y: [/mm] y [mm] \in [/mm] Q [mm] \subseteq \mathbb{R}\setminus [/mm] A
Sei x [mm] \not\in [/mm] A, nach obigen [mm] \exists [/mm] S [mm] \in \mathcal{W}_x: [/mm] x [mm] \in [/mm] S [mm] \subseteq \mathbb{R} \setminus [/mm] A.
Da S ein Element einer Umgebungsbasis von x ist existiert eine offene Menge O: x [mm] \in [/mm] O [mm] \subseteq [/mm] S

Ich würde gerne ausnutzten(schon gezeigt):
1) dass [mm] \mathbb{R}^2 [/mm] mit der Standarttop als metrischen Raum sicher [mm] T_3 [/mm] ist.
2) Niemitzki-Topologie feiner ist als die Eukldische Topologie in der oberen Halbene

Kurze Überlegung war:
Für [mm] A\subseteq \mathhb{R}\times \{0\} \Rightarrow A=\overline{A}\subseteq \overline{\mathbb{R} \times \{0\}} [/mm] = [mm] \mathbb{Q}\times \{0\} [/mm]


        
Bezug
Niemytzki-Raum regulär?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:59 Mi 23.09.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Niemytzki-Raum regulär?: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:55 Sa 26.09.2015
Autor: sissile

Hat vlt. wer einen Buch-Tipp wo ich einen Beweis dazu finden kann?
LG,
Sissi

Bezug
                        
Bezug
Niemytzki-Raum regulär?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 27.09.2015
Autor: Ladon

Hallo sissile,

Wikipedia nennt als Beispiel eines [mm] $T_{3\frac{1}{2}}$-Raumes [/mm] den []  Niemytzki-Raum (folge dem Link).
Damit ist der Niemytzki-Raum sowohl vollständig als auch regulär hausdorffsch.
Vielleicht hilft in diesem Fall die []folgende PDF (S. 28).
Ich kenne mich in dem Thema nicht hinreichend gut aus, als dass ich die Qualität der Quelle beurteilen könnte. Daher stelle ich die Frage erst mal auf "Reagiert".

MfG
Ladon

PS: Anscheinend bietet auch []Topologie : eine Grundvorlesung. Cigler, Johann; Reichel, Hans-Christian einige Hinweise.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de