www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Nilpotente Gruppen
Nilpotente Gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Gruppen: Idee, Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:19 Mo 23.05.2005
Autor: Peti

Hallo!
Es ist doch richtig, dass immer gilt: genau dann wenn G nilpotent ist, ist G das direkte Produkt seiner Sylowuntergruppen?
Ist dann auch jede Untergruppe und jede Quotientengruppe einer nilpotenten Gruppe nilpotent? Es müsste doch dann auch die Umkehrung stimmen?
Vielen Dank
und liebe Grüße

        
Bezug
Nilpotente Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Di 24.05.2005
Autor: Julius

Hallo Peti!

>  Es ist doch richtig, dass immer gilt: genau dann wenn G
> nilpotent ist, ist G das direkte Produkt seiner
> Sylowuntergruppen?

Ja!  

[mm] "$\Leftarrow$": [/mm]

Klar, da jede endliche $p$-Gruppe nilpotent ist und [mm] $K^m(G \times H)=K^m(G) \times K^m(H)$ [/mm] gilt.

[mm] "$\Rightarrow$": [/mm]

Schwierig. Man zeigt hier, dass für eine echte Untergruppe $U [mm] \subsetneq [/mm] G$ gilt: $U [mm] \ne [/mm] N(U)$, wobei $N(U)$ der Normalisator von $U$ ist. (Man muss sich noch überlegen, dass daraus dann die Behauptung folgt. Liefere ich bei Interesse aber gerne nach.) Ist $U [mm] \subsetneq [/mm] G$ eine echte Untergruppe, so wählt man aus

[mm] $K^0(G) \supset K^1(G) \supset \ldots \supset K^m(G)=\{e\}$ [/mm]

ein $i$ mit $U [mm] \supset K^{i+1}(G)$, [/mm] aber $U [mm] \not\supset K^i(G)$. [/mm]

Dann gilt:

[mm] $[K^i(G), [/mm] U] [mm] \subset [/mm] U$,

also:

[mm] $K^i(G) \subset [/mm] N(U)$.

Daraus folgt die Behauptung.

>  Ist dann auch jede Untergruppe und jede Quotientengruppe
> einer nilpotenten Gruppe nilpotent?

[ok]

Viele Grüße
Julius


Bezug
                
Bezug
Nilpotente Gruppen: Frage
Status: (Frage) beantwortet Status 
Datum: 14:34 Di 24.05.2005
Autor: Peti

Hallo!
Leider habe ich noch nicht verstanden, wie ich beweisen soll, dass jede Untergruppe und jede Qutientengruppe einer nilpotenten Gruppe nilpotent sind. Oder folgt die Behauptung direkt aus deinem Beweis? ich habe ihn leider nicht richtig verstanden, vielleicht kannst du mir deine Erläuterung schicken?Gilt hier auch die Umkehrung?
vielen,vielen Dank
lieber Gruß

Bezug
                        
Bezug
Nilpotente Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 25.05.2005
Autor: Julius

Hallo Peti!

Naja, für Untergruppen folgt es sofort aus der trivialen Beziehung

[mm] $K_n(U) \subset K_n(G)$. [/mm]

Ist $N$ ein Normalteiler, dann kann man mit vollständiger Induktion zeigen:

[mm] $K_n(G/N) [/mm] = [mm] K_n(G)N/N$. [/mm]

Daraus folgt die Behauptung auch für Faktorgruppen.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de