www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Niveaulinien komplexer Funktio
Niveaulinien komplexer Funktio < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Niveaulinien komplexer Funktio: Idee
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 20.05.2006
Autor: susi2006

Hallo!

Ich möchte die Niveaulinien der Funktion [mm] f(z)=e^{\bruch{1}{z}} [/mm] für |f(z)|=const. darstellen.
Mit Maple sieht man, dass es ich dabei um Kreise handelt, die durch den Ursprung gehen. Aber mir ist nicht klar, wie ich dass begründen kann.
Ich bin wie folgt vorgegangen:

aus [mm] |e^{\bruch{1}{z}}|=const. \Rightarrow |e^{\bruch{x-iy}{\wurzel{x^{2}+y^{2}}}}|=e^{\bruch{x}{\wurzel{x^{2}+y^{2}}}} [/mm] = const. =:a >0

Wenn man jetzt auf beiden Seiten dein Logarithm. anwendet, kommt man zu:

ln(a) = [mm] \bruch{x}{\wurzel{x^{2}+y^{2}}} [/mm]
Hieraus ist ersichtlich, dass für 0<a<1 die rechte Seite negativ und für a>0 die rechte Seite positiv wird.

[mm] \Rightarrow (\bruch{x}{ln(a)})^{2}=x^{2}+y^{2} [/mm]

Dies sieht ja schon einer Kreisgleichung sehr ähnlich, doch ich weiß nicht, wie ich hieraus schließen kann, dass es sich um Kreise handelt, die durch den Ursprung gehen.
Vielleicht kann mir jemand einen Tip geben!
Vielen Dank im Voraus!

        
Bezug
Niveaulinien komplexer Funktio: einsetzen
Status: (Antwort) fertig Status 
Datum: 15:06 Sa 20.05.2006
Autor: leduart

Hallo susi
> Hallo!
>  
> Ich möchte die Niveaulinien der Funktion
> [mm]f(z)=e^{\bruch{1}{z}}[/mm] für |f(z)|=const. darstellen.
>  Mit Maple sieht man, dass es ich dabei um Kreise handelt,
> die durch den Ursprung gehen. Aber mir ist nicht klar, wie
> ich dass begründen kann.
>  Ich bin wie folgt vorgegangen:
>  
> aus [mm]|e^{\bruch{1}{z}}|=const. \Rightarrow |e^{\bruch{x-iy}{\wurzel{x^{2}+y^{2}}}}|=e^{\bruch{x}{\wurzel{x^{2}+y^{2}}}}[/mm]
> = const. =:a >0
>  
> Wenn man jetzt auf beiden Seiten dein Logarithm. anwendet,
> kommt man zu:
>  
> ln(a) = [mm]\bruch{x}{\wurzel{x^{2}+y^{2}}}[/mm]
> Hieraus ist ersichtlich, dass für 0<a<1 die rechte Seite
> negativ und für a>0 die rechte Seite positiv wird.
>  
> [mm]\Rightarrow (\bruch{x}{ln(a)})^{2}=x^{2}+y^{2}[/mm]
>  
> Dies sieht ja schon einer Kreisgleichung sehr ähnlich, doch
> ich weiß nicht, wie ich hieraus schließen kann, dass es
> sich um Kreise handelt, die durch den Ursprung gehen.

Ganz einfach, (0,0) erfüllt die Gleichung! oder aus x=0 folgt y=0
Besser aber, um auch die Mittelpunkte der Kreise und Radien in Abh. von a zu sehen:
[mm](\bruch{x}{ln(a)})^{2}=x^{2}+y^{2}[/mm]
in "Mittelpunktsform " [mm] $(x-xm)^2+(y-ym)^2=r^2$ [/mm]
damit hast du für alle a>0 alles.
Gruss leduart



Bezug
                
Bezug
Niveaulinien komplexer Funktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 22.05.2006
Autor: susi2006

Hallo!

Vielen Dank für den Tipp. Ich hab jetzt rausbekommen, wieso es sich um Kreise handelt, indem ich auf die Kreisgleichung umgestellt habe.
Aber mir ist nicht klar, ob die Kreise wirklich den Punkt (0,0) durchlaufen, oder nicht. Eigentlich ist ja x=0 und y=0 nicht definiert.
Denn: [mm] e^{\bruch{x}{x^{2}+y^{2}}} [/mm] ist ja für x=y=0 nicht definiert
Also sind es Kreise, die alle durch den Nullpunkt laufen, diesen aber NICHT wirklich annehmen, oder wird der Ursprung doch von jeden angenommen?

Vielen Dank für die Hilfe!

Bezug
                        
Bezug
Niveaulinien komplexer Funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 22.05.2006
Autor: leduart

Hallo susi
Du hast recht! Die Niveaulinien sind Kreise, die ihren Mittelpunkt auf der reellen Achse haben und die als Kreise durch den Nullpkt gehen, dieser gehört aber nicht zu den Niveaulinien. (die imaginäre Achse ,auchohne 0,0 gehört auch dazu!)
In deinem 1. post war noch ein Fehler, den du scheints behoben hast:
[mm] 1/z=(x-iy)/(x^2+y^2) [/mm]   ohne Wurzel.
Deine Kreisgl. deshalb :  [mm] (x^2+y^2)=x/lna a\ne [/mm] 1  a=1: x=0, y [mm] \ne0 [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de