www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Norm
Norm < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Sa 21.05.2005
Autor: Reaper

Hallo wir haben im Skript ein Beispiel von einer Norm gegeben die für die es kein inneres Produkt sigma gibt.
Bsp.: Auf  [mm] \IR^2 [/mm] ist || ||: [mm] \IR^2 ->\IR [/mm] mit ||(x,y)|| := max(|x|,|y|) eine Norm
("Maximumsnorm"), für die es aber kein inneres Produkt sigma gibt mit || ||
= || [mm] ||_{sigma} [/mm]
Wie zeige ich nun dass hier kein inneres Produkt induziert wird?
Wahrscheinlich muss ich die 3 Eigenschaften die für einen unitären Raum gelten widerlegen für diese Maximumsnorm, also
z.b.:   [mm] \forall [/mm] V in V: [mm] ||v||_{sigma} [/mm] >= 0 und [mm] ||v||_{sigma} [/mm] = 0  [mm] \gdw [/mm] v=0
Wie gehe ich an das Ganze heran und stimmt meine Vermutung?

        
Bezug
Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Sa 21.05.2005
Autor: SEcki


> Hallo wir haben im Skript ein Beispiel von einer Norm
> gegeben die für die es kein inneres Produkt sigma gibt.

Benutze bitte in Zukunft den Formeldeitor - dann kann man das lesen, was du da hinschreibst.

>  Wie zeige ich nun dass hier kein inneres Produkt induziert
> wird?

Soll heissen: die Norm ist von keiner symmetrischen Bilinearform induziert, oder?

Jetzt nehme mal an das wäre so, dann kannst du x als Summe der beidenm Einheistvektoren schreiben - setze da mal ins Quadrat (! Warum?) der Bilinearform ein, die angeblich die Maximumsnorm induziert - rechne mal rum, kommst du auf einen Widerspruch?

SEcki

Bezug
                
Bezug
Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Sa 21.05.2005
Autor: Reaper

Hallo..ich kapier noch nicht ganz was du meinst mit
>Jetzt nehme mal an das wäre so, dann kannst du x als Summe der beidenm >Einheistvektoren schreiben - setze da mal ins Quadrat (! Warum?) der >Bilinearform ein, die angeblich die Maximumsnorm induziert

||(x,y)|| =  [mm] \wurzel{x * E * y^{t}}...das [/mm] wäre die Norm wenn sie von einem
inneren Produkt induziert wird oder?

Bezug
                        
Bezug
Norm: Parallelogrammgleichung
Status: (Antwort) fertig Status 
Datum: 14:51 Sa 21.05.2005
Autor: Stefan

Hallo Reaper!

Wäre [mm] $\Vert \cdot [/mm] Vert$ von einer Bilinearform induziert, dann müsste [mm] $\Vert \cdot \Vert$ [/mm] die Parallelogrammgleichung

$2 [mm] \Vert [/mm] x [mm] \Vert [/mm] + 2 [mm] \Vert [/mm] y [mm] \Vert [/mm] = [mm] \Vert [/mm] x+y [mm] \Vert^2 [/mm] + [mm] \Vert [/mm] x-y [mm] \Vert^2$ [/mm]

erfüllen (für beliebige $x,y [mm] \in \IR^2$). [/mm]

Aber diese wird nicht von [mm] $x=\pmat{1 \\ 0}$ [/mm] und [mm] $y=\pmat{0 \\ 1}$ [/mm] erfüllt.

Prüfe das doch bitte mal nach. :-)

Viele Grüße
Stefan

Bezug
                                
Bezug
Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Sa 21.05.2005
Autor: Reaper

Hallo...stimmt die Gleichung wird nicht erfüllt.

$ 2 [mm] \Vert [/mm] x [mm] \Vert [/mm] + 2 [mm] \Vert [/mm] y [mm] \Vert [/mm] = [mm] \Vert [/mm] x+y [mm] \Vert^2 [/mm] + [mm] \Vert [/mm] x-y [mm] \Vert^2 [/mm] $

Wenn ich jetzt die Basis einsetzte kommt raus:

2+2 = 2
und 4 != 2

Aber was hat das jetzt mit dem konkreten Beispiel der Maximumsnorm zu tun?
Das könnte ich doch für jede beliebige Abbildungsfunktion einsetzen oder?

Bezug
                                        
Bezug
Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Di 24.05.2005
Autor: Stefan

Hallo Reaper!

Bei Normen, die von einem Skalarprodukt induziert sind, ist diese Identität ("Parallelogrammgleichung") immer erfüllt. Erfüllt eine Norm diese Gleichung für ein Paar $(x,y)$ nicht (so wie die Maximumsnorm), so ist sie zwangsläufig von keinem Skalarprodukt induziert, d.h. es gibt kein Skalarprodukt [mm] $\delta$ [/mm] mit

[mm] $\Vert [/mm] x [mm] \Vert [/mm] = [mm] \sqrt{\delta(x,x)}$. [/mm]

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de