www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Normale/Tangente
Normale/Tangente < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normale/Tangente: Tipp;Hilfe
Status: (Frage) beantwortet Status 
Datum: 20:42 Do 20.09.2007
Autor: Ridvo

Aufgabe
Welche Ableitung hat die Funktion f an der Stelle x1=1, welche an der Stelle x2=2?
Gib die die Gleichungen der Tangenten und der Normalen in den Punkten (1/f(1)) und Q (-2/f(-2))?

Gleichung:

[mm] f(x)=\bruch{3x^2}{3+x^2} [/mm]
                            

Hallo liebe Mitglieder,

ich habe eine Frage bezüglich meiner Hausaufgabe und zwar komm ich einfach nicht weiter und Freunde können mir ebenso nicht weiter helfen...

Also habe die 1. ableitung gebildet mit

[mm] f'(x)=\bruch{(6x)(3x+x^2)-(3x^2)(2x)}{(3+x^2)^2} [/mm]

     = [mm] \bruch{18}{(3+x^2)} [/mm]


Für die Stelle [mm] f_{1} [/mm] habe ich 1 in [mm] fx_{1} [/mm] eingesetzt:

[mm] f_{1}=\bruch{9}{8} [/mm]
[mm] f_{-2}=\bruch{(18)}{(3+(-2)^2)^2}=\bruch{18}{1}=18 [/mm]


Ok ab nun weiß ich nicht mehr weiter:

Geradengleichung ist:
y=mx+b

Wie errechne ich die Tangentengleichung?

also [mm] m_{n} [/mm] bekomm ich heraus durch:

[mm] m_{n}=\bruch{-1}{m_{t}} [/mm]


Ich wäre echt dankbar, wenn ihr mir helfen könntet!

Danke im voraus!!

LG Ridvan

        
Bezug
Normale/Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Do 20.09.2007
Autor: Bastiane

Hallo Ridvo!

> Welche Ableitung hat die Funktion f an der Stelle x1=1,
> welche an der Stelle x2=2?
>  Gib die die Gleichungen der Tangenten und der Normalen in
> den Punkten (1/f(1)) und Q (-2/f(-2))?
>  
> Gleichung:
>  
> [mm]f(x)=\bruch{3x^2}{3+x^2}[/mm]
>                            
> Hallo liebe Mitglieder,
>  
> ich habe eine Frage bezüglich meiner Hausaufgabe und zwar
> komm ich einfach nicht weiter und Freunde können mir ebenso
> nicht weiter helfen...
>  
> Also habe die 1. ableitung gebildet mit
>  
> [mm]f'(x)=\bruch{(6x)(3x+x^2)-(3x^2)(2x)}{(3+x^2)^2}[/mm]

Weiß nicht, ob es nur ein Schreibfehler ist, aber im Zähler muss es [mm] (3+x^2) [/mm] heißen.
  

> = [mm]\bruch{18}{(3+x^2)}[/mm]

Und wie du hier drauf kommst, weiß ich nicht. Ich erhalte da einfach nur: [mm] f'(x)=\frac{18x}{(3+x^2)^2}. [/mm]

> Für die Stelle [mm]f_{1}[/mm] habe ich 1 in [mm]fx_{1}[/mm] eingesetzt:
>  
> [mm]f_{1}=\bruch{9}{8}[/mm]
>  [mm]f_{-2}=\bruch{(18)}{(3+(-2)^2)^2}=\bruch{18}{1}=18[/mm]
>  
>
> Ok ab nun weiß ich nicht mehr weiter:
>  
> Geradengleichung ist:
>  y=mx+b
>
> Wie errechne ich die Tangentengleichung?

Die Steigung ist die Ableitung an dem gegebenen Punkt, und dann hast du ja noch genau diesen Punkt (mit x- und y-Wert) gegeben. Wenn du das alles in die allgemeine Geradengleichung einsetzt, erhältst du b und hast damit die komplette Gleichung.

> also [mm]m_{n}[/mm] bekomm ich heraus durch:
>  
> [mm]m_{n}=\bruch{-1}{m_{t}}[/mm]

[daumenhoch] Genau.
  
Und dann machst du das Gleiche, wie bei der Tangentengleichung. Die Steigung einsetzen, und x- und y-Wert des Punktes ebenfalls, so kannst du b berechnen und fertig. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de