www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Normalebene
Normalebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Di 26.08.2008
Autor: Swifty

Aufgabe
Gegeben: Parameterdarstellung der Geraden g:
Vektor x = [mm] \vektor{2 \\ 1 \\ -3} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{1 \\ 0 \\ -1} [/mm]

Bestimme die Gleichung der Normalebene E von g durch den Punkt A mit dem Ortsvektor a.
Schreibe die Gleichung auch als Koordinatengleichung

Guten Tag!
Bei der Aufgabe bin ich mir nicht ganz sicher..

Also ich hab bis jetzt:

[mm] \vektor{1 \\ 0 \\ -1} [/mm] * [mm] (\vektor{x1 \\ x2 \\ x3} [/mm] - [mm] \vektor{2 \\ 1 \\ -3}) [/mm] = 0
(Skalarprodukt)
wenn ich das ausrechne komme ich auf x1 - x3 -5 = 0

aber damit ist die aufgabe noch nicht gelöst oder?
Man soll ja eine Ebenengleichung aufstellen, also denk ich ma ich muss am ende ein Ergebnis in der Form Vektor x = Vektor a + k*vektor u + l*vektor v herausbekommen, oder?

danke schonmal für jede Hilfe!
mfg
Swifty

        
Bezug
Normalebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Di 26.08.2008
Autor: angela.h.b.


> Gegeben: Parameterdarstellung der Geraden g:
> Vektor x = [mm]\vektor{2 \\ 1 \\ -3}[/mm] + [mm]\lambda[/mm] * [mm]\vektor{1 \\ 0 \\ -1}[/mm]
>  
> Bestimme die Gleichung der Normalebene E von g durch den
> Punkt A mit dem Ortsvektor a.
>  Schreibe die Gleichung auch als Koordinatengleichung
>  Guten Tag!
>  Bei der Aufgabe bin ich mir nicht ganz sicher..
>  
> Also ich hab bis jetzt:
>  
> [mm]\vektor{1 \\ 0 \\ -1}[/mm] * [mm](\vektor{x1 \\ x2 \\ x3}[/mm] -
> [mm]\vektor{2 \\ 1 \\ -3})[/mm] = 0
>  (Skalarprodukt)
>  wenn ich das ausrechne komme ich auf x1 - x3 -5 = 0
>  
> aber damit ist die aufgabe noch nicht gelöst oder?

Hallo,

doch, damit hast Du die Aufabe gelöst.

Du hast zunächst die Normalenform der Ebenengleichung aufgeschrieben, und danach hast Du die geforderte Koordinatengleichung geliefert.

Du hast die Ebenengleichung also bereits zweimal hingeschrieben.

>  Man soll ja eine Ebenengleichung aufstellen, also denk ich
> ma ich muss am ende ein Ergebnis in der Form Vektor x =
> Vektor a + k*vektor u + l*vektor v herausbekommen, oder?

Davon, daß Du die Parametergleichung der Normalebene liefern sollst, ist mit keinem Wort die Rede.

Aber Du kannst es natürlich tun.

Z.B. so: finde aus der Koordinatengleichung neben dem Punkt A noch zwei weitere Punkte in der Ebene, so daß die Punkte nicht auf einer gemeinsamen Geraden liegen. Daraus kannst Du dann eine Parametergleichung machen.

Raffinierter geht's so: nimm als Stützvektor den Ortsvektor von A, also [mm] \vektor{2 \\ 1 \\ -3}, [/mm] denn  dieser Punkt liegt ja ganz sicher in der gesuchten Ebene. Als Richtungsvektoren u und v suchst Du Dir zwei Vektoren, die senkrecht zu [mm] \vektor{1 \\ 0 \\ -1} [/mm] (und natürlich kein Vielfaches voneinander) sind.

Gruß v. Angela

Bezug
                
Bezug
Normalebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Di 26.08.2008
Autor: Swifty

Hallo
achso, hätt nicht gedacht, dass das so einfach ist
dann kann ich jetzt beruhigt die anderen Aufgaben rechnen ;-)

danke!
schönen Tag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de