www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Normalenform der Ebene
Normalenform der Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenform der Ebene: Frage zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 06.09.2008
Autor: nununu

Aufgabe
Die ebene E geht durch den pkt. S (4/-2/1) und ist orthogonal zur geraden g: x = (3 /-3/ 12) + t (3/-1/5)
Stellen sie eine gleichung der ebene e in normalenform auf.

Hallo!
Meine frage bezglich der aufgabe ist folgende:
Ich weiß nich recht wie ich da ran gehen soll.
Klar is das ich riegdnwie auf den normalenvektor n kommen muss um so die normalenform aufzustellen, weil n skalarmultipliziert mit dem Punkt in der ebene 0 ergibt.
dann hätte ich halt = OX - OP [mm] \* [/mm] n =0

aber wie komm ich auf n ?
irgendwie von der gleichung??
danke schon mal!






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalenform der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 06.09.2008
Autor: angela.h.b.


> Die ebene E geht durch den pkt. S (4/-2/1) und ist
> orthogonal zur geraden g: x = (3 /-3/ 12) + t (3/-1/5)
>  Stellen sie eine gleichung der ebene e in normalenform
> auf.
>  Hallo!
>  Meine frage bezglich der aufgabe ist folgende:
>  Ich weiß nich recht wie ich da ran gehen soll.
>  Klar is das ich riegdnwie auf den normalenvektor n kommen
> muss um so die normalenform aufzustellen, weil n
> skalarmultipliziert mit dem Punkt in der ebene 0 ergibt.
>  dann hätte ich halt = OX - OP [mm]\*[/mm] n =0
>  
> aber wie komm ich auf n ?
>  irgendwie von der gleichung??
>  danke schon mal!

Hallo,

ein Punkt der Ebene ist Dir ja schon vorgegeben, S (4/-2/1).

Nun fehlt der Normalenvektor.

Lt. Aufgabe soll ja die gesuchte Ebene senkrecht zur Geraden g sein. Stell Dir das mal bildlich vor: irgendwo durchstößt der Schaschlikspieß (Gerade) Deinen Zettel (Ebene) senkrecht. Die Richtung der Geraden ist doch genau in Richtung des Normalenvektors.

Also ist ein Normalenvektor der Vektor --- ???

Gruß v. Angela



Bezug
                
Bezug
Normalenform der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 06.09.2008
Autor: nununu

(3/-1/5) ? also der richtungsvektor der gerade??

Bezug
                        
Bezug
Normalenform der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Sa 06.09.2008
Autor: angela.h.b.


> (3/-1/5) ? also der richtungsvektor der gerade??

Hallo,

ja, genau der!

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de