www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Normalenform zu Parameterform
Normalenform zu Parameterform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenform zu Parameterform: Ist dies richtig?
Status: (Frage) beantwortet Status 
Datum: 18:05 Fr 19.10.2007
Autor: Fanca

Aufgabe
Bestimmen Sie eine Gleichung der Ebene E in Paramterform

Hallo!

Gegeben ist folgende Gleichung:

[mm] E:\{\vec{x}- \vektor{-1 \\ -2 \\ -3}\}*\vektor{3 \\ 5 \\ 0}=0 [/mm]

Die hab ich dann erstmal in die Normalenform umgewandelt:

[mm] \vektor{3 \\ 5 \\ 0} \vec{x}-13=0 [/mm]

Dann Koordinatenform gebildet:

[mm] -3x_{1}-5x_{2}-13=0 [/mm]

Dann nach nach [mm] x_{2} [/mm] aufgelöst:
[mm] x_{2}= 3x_{1}+ 5x_{2} [/mm] + 13

--> [mm] x_{1}= x_{1} [/mm] + 0 + 0
    [mm] x_{2}= 3x_{1}+ 5x_{2} [/mm] + 13

so bin ich auf die folgende Parameterform gekommen:

E: [mm] \vec{x} \vektor{0 \\ 13} [/mm] + [mm] r\vektor{1 \\ 3} [/mm] + [mm] s\vektor{0 \\ 5} [/mm]

Ist das soweit richtig?

Danke für eure Hilfe,
Fanca



        
Bezug
Normalenform zu Parameterform: Korrekturen
Status: (Antwort) fertig Status 
Datum: 18:47 Fr 19.10.2007
Autor: Loddar

Hallo Fanca!



> Die hab ich dann erstmal in die Normalenform umgewandelt:
> [mm]\vektor{3 \\ 5 \\ 0} \vec{x}-13=0[/mm]

Hier hat sich ein Vorzeichenfehler eingeschlichen. Das muss $E \ : \ [mm] \vektor{3 \\ 5 \\ 0}*\vec{x} [/mm] \ [mm] \red{+} [/mm] \ 13 \ = \ 0$ heißen.



> E: [mm]\vec{x} \vektor{0 \\ 13}[/mm] + [mm]r\vektor{1 \\ 3}[/mm] + [mm]s\vektor{0 \\ 5}[/mm]

Abgesehen von dem Folgefehler: wo ist denn hier jeweils die 3. Koordinate abgeblieben?


Gruß
Loddar


Bezug
                
Bezug
Normalenform zu Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Fr 19.10.2007
Autor: Fanca

Mhm.. ja, das hat ich mich auch gewundert *g* aber [mm] x_{3} [/mm] fällt ja weg.. ich weiß auch nicht.
Wie würdest du es denn machen?

Bezug
                        
Bezug
Normalenform zu Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Fr 19.10.2007
Autor: angela.h.b.


> Mhm.. ja, das hat ich mich auch gewundert *g* aber [mm]x_{3}[/mm]
> fällt ja weg.. ich weiß auch nicht.
>  Wie würdest du es denn machen?

Hallo,

daß hier etwas nicht stimmen kann, merkst Du ja daran, daß $ [mm] \vektor{3 \\ 5 \\ 0} \vec{x}+13=0 [/mm] $ offensichtlich eine Gerade im Dreidimensionalen beschreibt. Jeder Punkt, der auf der Geraden liegt, hat ja drei Koordinaten.

Daher KANN $ [mm] \vec{x} \vektor{0 \\ 13} [/mm] $ + $ [mm] r\vektor{1 \\ 3} [/mm] $ + $ [mm] s\vektor{0 \\ 5} [/mm] $ nicht dieselbe Gerade beschreiben. Die Punkte auf dieser Geraden haben ja nur zwei Koordinaten. Es sind also nicht dieselben.


[mm] \vektor{3 \\ 5 \\ 0} \vec{x}+13=0 [/mm] in Koordinatenform lautet

[mm] 3x_1+5x_2+13=0 [/mm]

[mm] x_3 [/mm] kommt darin nicht mehr vor. Die Wahl der dritten Koordinate hat also keinen Einfluß aus die Lösbarkeit des Gleichungssystems.

Daher kannst Du [mm] x_3 [/mm] ganz beliebig wählen.

Also ist
[mm] x_3=r [/mm] mit [mm] r\in \IR. [/mm]

Deine Gleichung hat zwei Unbekannte. Du siehst, daß Du eine völlig beliebig wählen kannst, die zweite muß dann dazu passen.
Für

[mm] x_2=s [/mm] mit [mm] s\in \IR [/mm] muß also

[mm] x_1=... [/mm]     sein.


Daraus erhältst Du

[mm] \vec{x}=\vektor{x_1 \\ x_2 \\ x_3}=\vektor{... \\ s \\ r}=\vektor{... \\ ... \\...}+s\vektor{... \\ ... \\...}+r\vektor{... \\ ... \\...}. [/mm]

Gruß v. Angela





Bezug
                                
Bezug
Normalenform zu Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:15 Sa 20.10.2007
Autor: Fanca

Hallo Angela,

danke erstmal für deine Antwort! Sie hat mir mehr weitergeholfen.
Trotzdem steh ich leider noch auf dem Schlauch.
Du hast mir folgendes geschrieben:

> Daraus erhältst Du
>  
> [mm]\vec{x}=\vektor{x_1 \\ x_2 \\ x_3}=\vektor{... \\ s \\ r}=\vektor{... \\ ... \\...}+s\vektor{... \\ ... \\...}+r\vektor{... \\ ... \\...}[/mm]

ich hab da jetzt vor gesessen und bin leider nicht so weiter gekommen. Ich steh da oft auf dem Schlauch^^ bitte gib mir doch nochmal kurz Hilfe, wie ich bis hier hin komme:

> [mm] \vec{x}=\vektor{x_1 \\ x_2 \\ x_3}=\vektor{... \\ s \\ r}=\vektor{... \\ ... \\...} [/mm]

Danke!

Gruß Simone

Bezug
                                        
Bezug
Normalenform zu Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Sa 20.10.2007
Autor: koepper

Guten Morgen Simone,

Die Gleichung der Ebene in Koordinatenform lautet
(ich verwende der Einfachheit halber $x = [mm] x_1, y=x_2, z=x_3.$) [/mm]

3x + 5y = -13

Löse nach x auf:

$x = [mm] -\frac{13}{3} [/mm] - [mm] \frac{5}{3} [/mm] y$

Ergänze nun die offensichtlichen Identitäten:

y = 0 + 1 y + 0 z
z = 0 + 0 y + 1 z

und schreibe die 3 Gleichungen untereinander (jeweils + - Zeichen und y und z untereinander)

Wenn du diese 3 Gleichungen jetzt als eine Vektorgleichung betrachtest und die Variablen y und z ersetzt durch Parameter deiner Wahl, dann "siehst" du die Parametergleichung der Ebene schon:

[mm] $\vec{x} [/mm] = [mm] \vektor{-\frac{13}{3} \\ 0 \\ 0} [/mm] + y * [mm] \vektor{- \frac{5}{3} \\ 1 \\ 0} [/mm] + z * [mm] \vektor{0 \\ 0 \\ 1}$ [/mm]

Sinnvollerweise könnte man den 2. Richtungsvektor mit 3 multiplizieren, um den Bruch hinaus zu bekommen.

Laß mich bitte noch anmerken:
In der Praxis ist es so gut wie nie sinnvoll, eine Koordinatenform oder eine Normalenform in Parameterform zu bringen.
Mit Koordinatenform oder Normalenform lösen sich alle Aufgabenstellungen schneller und leichter.

OK?

Gruß
Will





Bezug
                                                
Bezug
Normalenform zu Parameterform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Sa 20.10.2007
Autor: Fanca

Hallo!

Danke, jetzt weiß ich Bescheid :-)
Das hat mir weiter geholfen.

Diese Umtrechenrei ist ja auch nur Übung und Hausuafgabe. Ich persönlich rechne nicht gerne mit der Parameterform.

Gruß Fanca

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de