www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Normalenvektor gesucht! ABITUR
Normalenvektor gesucht! ABITUR < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenvektor gesucht! ABITUR: N-vektor, ohne Kreuzprodukt!
Status: (Frage) beantwortet Status 
Datum: 16:22 Di 07.02.2006
Autor: RuffY

Hallo Matheraum.de-User,

ich schreibe morgen meine Abiturarbeit in Mathe und hab jetzt etwas Panik, da ich nicht weiß, wie ich den Normalenvektor zu einer Ebene finden kann ohne das Kreuzprodukt. Dieses hatten wir nicht im Untericht behandelt.

Bsp: [mm]E:\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+r*\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}+s*\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} [/mm]

Ich wäre für eine detaillierte Anleitung anhand dieses Beispiels sehr erfreut! Danke!

Sebastian

        
Bezug
Normalenvektor gesucht! ABITUR: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 16:46 Di 07.02.2006
Autor: Roadrunner

Hallo RuffY!


Zunächst einmal viel [kleeblatt] für morgen!!


Gesucht ist also ein Normalenvektor [mm] $\vec{n} [/mm] \ = \ [mm] \vektor{x\\y\\z}$ [/mm] , der jeweils senkrecht auf die beiden Richtungsvektoren stehen soll.


[aufgemerkt] Wenn zwei Vektoren senkrecht aufeinander stehen, gilt für das Skalarprdukt dieser beiden Vektoren, dass es gleich Null ist.




Für unsere Aufgabe heißt das:

[mm] $\vektor{x\\y\\z}*\vektor{1\\3\\4} [/mm] \ = \ 1*x+3*y+4*z \ = \ x+3y+4z \ = \ 0$

[mm] $\vektor{x\\y\\z}*\vektor{2\\-1\\3} [/mm] \ = \ 2*x+(-1)*y+3*z \ = \ 2x-y+3z \ = \ 0$


Wir haben also folgendes Gleichungssystem zu lösen:

(I) $x+3y+4z \ = \ 0$

(II) $2x-y+3z \ = \ 0$


Eliminieren wir hier z.B. zunächst $x_$ durch $2*(I)-(II)$ :

$7y+5z \ =\ 0$    [mm] $\gdw$ [/mm]    $z \ = \ [mm] -\bruch{7}{5}y$ [/mm]


Nun wählen wir belibeig ein $y_$ (schließlich gibt es auch unendlich viele Normalenvektoren mit den genannten Eigenschaften). Taktisch klug ist hier der Wert $y \ = \ 5$ , um gannzahlige Werte zu erhalten:

[mm] $\Rightarrow$ [/mm]   $z \ = \ [mm] -\bruch{7}{5}*5 [/mm] \ = \ -7$

Dies setzen wir dann in eine der obigen Gleichungen ein und ermitteln $x_$ :

$x+3*5+4*(-7) \ =\ x+15-28 \ = \ x-13 \ = \ 0$    [mm] $\gdw$ [/mm]   $x \ = \ 13$


Ein gesuchter Normalenvektor lautet also: [mm] $\vec{n} [/mm] \ =\ [mm] \vektor{13\\5\\-7}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Normalenvektor gesucht! ABITUR: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Di 07.02.2006
Autor: RuffY

Vielen Dank! Ich denke das klappt! ;-))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de