www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Normalform-Scheitelpunktform
Normalform-Scheitelpunktform < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform-Scheitelpunktform: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 20:06 Sa 05.01.2008
Autor: RyCooder

Aufgabe
a) y= x²+2x+q        b) y=x²-px+100      c) y=x²-x+q        d)y=x²+0,6+q  

Ich muss diese Aufgaben von der Normalform in die Scheitelpunktform umwandeln. Ich habe einen Beitrag gelesen, bei dem es um etwas ähnliches geht, aber so GANZ genau gleich ist das dann doch irgendwie nicht.
Und wie schon gesagt, ich kann NICHTS davon, also bitte wie einem kleinen Kind jeden Schritt ganz ausführlich und genau Erklären, vor allem die -quadratische Ergänzung.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalform-Scheitelpunktform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Sa 05.01.2008
Autor: MontBlanc

Hallo,

es ist nicht nötig, den Artikel 2 mal zu posten. Wenn Dir an einer Antwort eines Mitgliedes etwas unklar ist, dann stell bitte fragen dazu.

Liebe Grüße,

exeqter

Bezug
        
Bezug
Normalform-Scheitelpunktform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 So 06.01.2008
Autor: steppenhahn

Zunächst -
Die Scheitelpunktform hängt stark mit den binomischen Formeln zusammen, diese solltest du auf jeden Fall können:

[mm] (a+b)^{2} [/mm] = [mm] a^{2} [/mm] + 2ab + [mm] b^{2} [/mm]
[mm] (a-b)^{2} [/mm] = [mm] a^{2} [/mm] - 2ab + [mm] b^{2} [/mm]

Die Scheitelpunktform sieht ja so aus:

[mm] (x+d)^{2}+e [/mm]

Das ist ja im Grunde eine binomische Formel, nur eben mit x und d statt a und b. Das e ergibt sich dann immer, je nachdem was wir quadratisch ergänzt haben.

a)
Legen wir doch mal unter den Term die binomische Formel:

        [mm] x^{2} [/mm] + 2x + q
[mm] (x+d)^{2} [/mm] = [mm] x^{2} [/mm] + 2dx + [mm] d^{2} [/mm]

Man sieht sofort: Damit das funktionieren kann, muss d = 1 sein. Denn dann steht da (wieder die eigentliche Aufgabe oben drüber)

        [mm] x^{2} [/mm] + 2x   + q
[mm] (x+1)^{2} [/mm] = [mm] x^{2} [/mm] + 2*1*x + [mm] 1^{2} [/mm]
      = [mm] x^{2} [/mm] + 2x    + 1

Wenn jetzt [mm] (x+1)^{2} [/mm] dasselbe wie [mm] x^{2} [/mm] + 2x + q sein soll,  müssen wir also noch die 1 wieder abziehen und q dazurechnen:

[mm] x^{2} [/mm] + 2x   + q = [mm] (x+1)^{2} [/mm] - 1 + q

Also ist das "e" in der Scheitelpunktform e = (q - 1).

--> [mm] x^{2} [/mm] + 2x   + q = [mm] (x+\underbrace{1}_{d})^{2} [/mm] + [mm] \underbrace{(q - 1)}_{e} [/mm]

Probiers mal mit den anderen genauso:

1. sowohl Aufgabenstellung als auch die binomische Formel [mm] (x+d)^{2} [/mm] = [mm] x^{2} [/mm] + 2dx + [mm] d^{2} [/mm] untereinanderschreiben

2. Herausfinden (anhand des Summanden 2dx), was denn nun "d" sein muss.

3. Herausgefundenes "d" in die binomische Formel [mm] (x+d)^{2} [/mm] = [mm] x^{2} [/mm] + 2dx + [mm] d^{2} [/mm] einsetzen.

4. Berechnen, was noch abgezogen bzw. dazugerechnet werden muss, damit aus der binomischen Formel dasselbe wird wie bei der Aufgabenstellung

Probiers aus!

Bezug
                
Bezug
Normalform-Scheitelpunktform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 So 06.01.2008
Autor: BruderJacob

tach

ähm steppenhahn war zwar richtig aber hat du nich die dritte binomische Formel vergessen?: a²-b²=(a+b)*(a-b)

ciao

Bezug
                        
Bezug
Normalform-Scheitelpunktform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 So 06.01.2008
Autor: steppenhahn

Völlig korrekt, natürlich gibt es diese auch noch - allerdings benötigt man die bei der Umwandlung von Normalform in Scheitelpunktform nicht, deswegen habe ich sie nicht mit aufgeschrieben.

Bezug
                                
Bezug
Normalform-Scheitelpunktform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 22.01.2008
Autor: BruderJacob

schon ok. wir hatten nur grad die formeln und da hab ich mich n bissel gewundert



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de