www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Normalform einer 3-Form
Normalform einer 3-Form < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform einer 3-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Mi 16.06.2010
Autor: Schei_y

Aufgabe
Bestimmen Sie die Normalform folgender 3-Form auf dem [mm] R^5: [/mm]
[mm] sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5 [/mm] + sin [mm] x_2 [/mm] cos [mm] x_3 dx_1 \wedge dx_2 \wedge dx_3 [/mm] - [mm] cos^2 x_1 dx_5 \wedge [/mm] dx2 [mm] \wedge dx_1 [/mm] - sin [mm] x_3 [/mm] cos [mm] x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4 [/mm] + [mm] sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2 [/mm]

Ich stehe komplett auf dem Schlauch. Habe leider in der betreffenden Vorlesung gefehlt und entweder bin ich zu doof zum suchen oder google findet icht gescheites zu diesem Thema. Daher wäre ich um Ansätze dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalform einer 3-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 16.06.2010
Autor: gfm


> Bestimmen Sie die Normalform folgender 3-Form auf dem [mm]R^5:[/mm]
>  [mm]sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5[/mm] + sin [mm]x_2[/mm] cos [mm]x_3 dx_1 \wedge dx_2 \wedge dx_3[/mm]
> - [mm]cos^2 x_1 dx_5 \wedge[/mm] dx2 [mm]\wedge dx_1[/mm] - sin [mm]x_3[/mm] cos [mm]x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4[/mm]
> + [mm]sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2[/mm]
>  Ich stehe
> komplett auf dem Schlauch. Habe leider in der betreffenden
> Vorlesung gefehlt und entweder bin ich zu doof zum suchen
> oder google findet icht gescheites zu diesem Thema. Daher
> wäre ich um Ansätze dankbar!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Guck mal hier: http://de.wikipedia.org/wiki/Differentialform

Vielleicht hilfst.

LG

gfm

Bezug
                
Bezug
Normalform einer 3-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 16.06.2010
Autor: Schei_y

Wenn sich das mal richtig durchliest und nicht nur überfliegt auf jeden Fall hilfreich. Trotzdem hätte ich gerne ein Beispiel mit Zahlen/Funktionen wenn das möglich wäre.

Bezug
                        
Bezug
Normalform einer 3-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Do 17.06.2010
Autor: gfm


> Wenn sich das mal richtig durchliest und nicht nur
> überfliegt auf jeden Fall hilfreich. Trotzdem hätte ich
> gerne ein Beispiel mit Zahlen/Funktionen wenn das möglich
> wäre.

Habe nie Differentialgeometrie gehört. In der Wiki gibt es eine Aussage, dass jede Diff'Form auf eine bestimmte Art geschrieben werden kann. Wie ist denn bei Euch die Normalform definiert?

LG

GFM

Bezug
                                
Bezug
Normalform einer 3-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Sa 19.06.2010
Autor: Schei_y

Normalform: jede $k$-Form lässt sich eindeutig in der Form [mm] $\summe_{I} \omega_I dx_I$ [/mm] darstellen, wobei [mm] $I=(i_1,...,i_k)$ [/mm] mit [mm] $i_1<...
für die ursprüngliche Aufgabe $ [mm] sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5 [/mm] + sin [mm] x_2 [/mm] cos [mm] x_3 dx_1 \wedge dx_2 \wedge dx_3 [/mm] - [mm] cos^2 x_1 dx_5 \wedge dx_2 dx_1 [/mm] - sin [mm] x_3 [/mm] cos [mm] x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4 [/mm] + [mm] sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2 [/mm] $ ergibt sich also

$1 [mm] dx_1 \wedge dx_2 \wedge dx_3 [/mm] $

ich habe jetzt weitere Aufgaben dieser Art gelöst und bin jetzt an einer Stelle, wo ich einen Ausdruck $ [mm] (x_1 dx_1 [/mm] - [mm] x_2 dx_2) \wedge [/mm] 0 $ habe. ist das $= 0$ oder [mm] $=(x_1 dx_1 [/mm] - [mm] x_2 dx_2)$? [/mm]

Bezug
                                        
Bezug
Normalform einer 3-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 19.06.2010
Autor: gfm


> Normalform: jede [mm]k[/mm]-Form lässt sich eindeutig in der Form
> [mm]\summe_{I} \omega_I dx_I[/mm] darstellen, wobei [mm]I=(i_1,...,i_k)[/mm]
> mit [mm]i_1<...
>  
> für die ursprüngliche Aufgabe [mm]sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5 + sin x_2 cos x_3 dx_1 \wedge dx_2 \wedge dx_3 - cos^2 x_1 dx_5 \wedge dx_2 dx_1 - sin x_3 cos x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4 + sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2[/mm]
> ergibt sich also
>
> [mm]1 dx_1 \wedge dx_2 \wedge dx_3[/mm]

Mußt Du nicht

1,2,3
1,2,4
1,2,5
2,3,4
2,3,5
3,4,5

betrachten?

>  
> ich habe jetzt weitere Aufgaben dieser Art gelöst und bin
> jetzt an einer Stelle, wo ich einen Ausdruck [mm](x_1 dx_1 - x_2 dx_2) \wedge 0[/mm]
> habe. ist das [mm]= 0[/mm] oder [mm]=(x_1 dx_1 - x_2 dx_2)[/mm]?

0 würde ich sagen.

LG

gfm

Bezug
                                                
Bezug
Normalform einer 3-Form: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:01 So 20.06.2010
Autor: Schei_y

die haben sich meiner Meinung nach alle raus gekürzt ...

vielen Dank für deine Hilfe!

Bezug
                                                        
Bezug
Normalform einer 3-Form: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 22.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de