www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Normalformen und Endos
Normalformen und Endos < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalformen und Endos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:53 Mo 11.09.2006
Autor: Riley

Hi!
wie ist das, wenn man V als endlich-dimensionalen VR, [mm] \psi \in End_k(V) [/mm] hat, und V als K[X]- Modul mit "skalarer Multi"  g a := [mm] g(\psi)(a) [/mm]  mit g [mm] \in [/mm] K[X]  und  a [mm] \in [/mm] V  betrachtet,

warum ist dann V ein endlich erzeugtesTorsionsmodul und direkte Summe zyklischer K[X]-Moduln?
und wie sehn diese zyklische Moduln genau aus?

wär echt cool, wenn ihr mir weiterhelfen könntet!

viele grüße
riley

ps: schon gefragt: http://www.matheboard.de/

        
Bezug
Normalformen und Endos: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Mo 11.09.2006
Autor: mathiash

Hallo und guten Morgen,

nun, denk doch mal an den Satz von Cayley-Hamilton: Das charakteristische Polynom von [mm] \psi \:\:\: g_{\psi} [/mm] hat ja so ein gewisses Verhalten, wenn man
[mm] \psi [/mm] einsetzt. Und warum ist V als K[X]-Modul endlich erzeugt ? Nun, sei B eine endliche Basis von V als K-Vektorraum, dann nimm doch
mal das Polynom  g(X)=1, es ist dann ja [mm] g(\psi)=id [/mm] (die Identität auf V), nicht wahr ?

Viele Grüße,

Mathias

Bezug
                
Bezug
Normalformen und Endos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Mo 11.09.2006
Autor: Riley

Hi Mathias!
danke für deine Antwort!
also ist es ein torsionsmodul, da das Min- und char.poly null werden, wenn man [mm] \psi [/mm] einsetzt?

d.h. es ist endlich erzeugt, weil es eine endliche basis hat'?

und noch ne andre frage, dieser Polynomring K[X] ist doch ein euklidischer, Ring und damit auch ein faktorieller und Hauptidealring, richtig?
d.h. die Ideale sind dann die Polys wo das Absolutglied verschwindet, weil das immer Vielfache sind?
Aber wie kann man dann erklären, dass die Vielfachen vom Minimalpolynom mit [mm] \psi [/mm] eingesetzt auch Null geben? muss man da das Minimalpoly als Hauptideal auffassen??

viele grüße
riley



Bezug
                        
Bezug
Normalformen und Endos: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 11.09.2006
Autor: mathiash

Hallo,


>  also ist es ein torsionsmodul, da das Min- und char.poly
> null werden, wenn man [mm]\psi[/mm] einsetzt?
>  
> d.h. es ist endlich erzeugt, weil es eine endliche basis
> hat'?

Sozusagen.

>  
> und noch ne andre frage, dieser Polynomring K[X] ist doch
> ein euklidischer, Ring und damit auch ein faktorieller und
> Hauptidealring, richtig?

Ja.

>  d.h. die Ideale sind dann die Polys wo das Absolutglied
> verschwindet, weil das immer Vielfache sind?

Der Sinn dieser Nachfrage erschließt sich mir nicht so ganz.
Ideale sind Hauptideale, sie können sehr wohl von einem Polynom mit
nicht-verschwindendem Absolutglied erzeugt werden.
Ideale sin übrigens nicht gleichzusetzen mit Polynomen, sie sind Mengen von Polynomen.

>  Aber wie kann man dann erklären, dass die Vielfachen vom
> Minimalpolynom mit [mm]\psi[/mm] eingesetzt auch Null geben? muss
> man da das Minimalpoly als Hauptideal auffassen??
>  

Wo ist da jetzt das Problem ? Wenn   [mm] g(\psi) [/mm] (a) =0, so gilt sicher auch  [mm] b\cdot g(\psi) [/mm] (a) =0 für alle [mm] b\in [/mm] K.

> viele grüße
>  riley
>  
>  

Ebenso viele Grüße,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de