www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Normalvektor einer Ebene
Normalvektor einer Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalvektor einer Ebene: Probleme bei der Berechnung
Status: (Frage) beantwortet Status 
Datum: 15:27 Mi 21.03.2007
Autor: kermit

Aufgabe
Die Aufgabe ist eigentlich etwas komplexer, aber ohne den Normalvektor komme ich nicht weiter :)

Also Aufgabe: Berechne den Normalvektor dieser Ebene:

[mm] \vektor{3 \\ -1 \\ 5} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{2 \\ -3 \\ -1} [/mm] + [mm] \mu [/mm] * [mm] \vektor{-4 \\ 6 \\ 2} [/mm]

Hallo,

die eigentliche Aufgabe befasst sich mit dem Abstand zwischen zwei parallelen Geraden, den man berechnen soll.

Dafür gibt es ja zwei Möglichkeiten und wir (mein mathe lk) soll das mit zwei aus den Richtungsvektoren der beiden Geraden konstruierten Ebene bilden.

Die beiden Geraden lauteten:

g: [mm] \vec{x} \vektor{3 \\ -1 \\ 5} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{2 \\ -3 \\ -1} [/mm]

h: [mm] \vec{x} \vektor{0 \\ 5 \\ -3} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{-4 \\ 6 \\ 2} [/mm]

Aus dem Gleichungssystem für den Normalvektor ergibt sich:

I:   2n1 - 3n2 - n3 = 0
II:  -4n1 + 6n2 +2n3 = 0

Wenn ich das auflöse/umforme etc. kommt da immer 0 = 0 raus, was eine lustige Aussage ist, mich aber nicht weiterbringt.

Fragen:
1) Ist die Ebene falsch, oder der Ansatz?
2) Oder habe ich bei der Normalvektor berechnung was falsch gemacht?

        
Bezug
Normalvektor einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 21.03.2007
Autor: Mary15


> Die Aufgabe ist eigentlich etwas komplexer, aber ohne den
> Normalvektor komme ich nicht weiter :)
>  
> Also Aufgabe: Berechne den Normalvektor dieser Ebene:
>  
> [mm]\vektor{3 \\ -1 \\ 5}[/mm] + [mm]\lambda[/mm] * [mm]\vektor{2 \\ -3 \\ -1}[/mm] +
> [mm]\mu[/mm] * [mm]\vektor{-4 \\ 6 \\ 2}[/mm]
>  Hallo,
>  
> die eigentliche Aufgabe befasst sich mit dem Abstand
> zwischen zwei parallelen Geraden, den man berechnen soll.
>  
> Dafür gibt es ja zwei Möglichkeiten und wir (mein mathe lk)
> soll das mit zwei aus den Richtungsvektoren der beiden
> Geraden konstruierten Ebene bilden.
>  
> Die beiden Geraden lauteten:
>  
> g: [mm]\vec{x} \vektor{3 \\ -1 \\ 5}[/mm] + [mm]\lambda[/mm] * [mm]\vektor{2 \\ -3 \\ -1}[/mm]
>  
> h: [mm]\vec{x} \vektor{0 \\ 5 \\ -3}[/mm] + [mm]\lambda[/mm] * [mm]\vektor{-4 \\ 6 \\ 2}[/mm]
>  
> Aus dem Gleichungssystem für den Normalvektor ergibt sich:
>  
> I:   2n1 - 3n2 - n3 = 0
>  II:  -4n1 + 6n2 +2n3 = 0
>  
> Wenn ich das auflöse/umforme etc. kommt da immer 0 = 0
> raus, was eine lustige Aussage ist, mich aber nicht
> weiterbringt.
>  
> Fragen:
>  1) Ist die Ebene falsch, oder der Ansatz?
>  2) Oder habe ich bei der Normalvektor berechnung was
> falsch gemacht?

Hallo,
Anscheinend ist die Gleichung der Ebene falsch.
Die beiden Spanvektoren [mm] \vektor{2 \\ -3 \\ -1} [/mm] und [mm] \vektor{-4 \\ 6 \\ 2} [/mm] sind kollinear bzw. linear abhängig.

[mm] \overrightarrow{v} [/mm] = [mm] -2*\overrightarrow{u} [/mm]
Sie dürfen nicht kollinear sein.
Um die Ebene zu konstruieren kannst du nur einen der Richtungsvektoren nehmen. Sie sind doch gleich, bzw. kollinear. Um den zweiten Spannvektor der Ebene zu bestimmen, nimm einen Punkt auf einer Gerade z.B. (3 | 1| 5)
und den zweiten Punkt auf anderen Gerade z.B. (0|5|-3) und bilde einen Vektor.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de