www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Normalverteilung
Normalverteilung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Fr 27.10.2017
Autor: Rocky1994

Moin,

schaut man sich die Standardnormalverteilungstabelle an bekomme ich für den Wert 0,77 = 0,77935 und für 0,78 = 0,7823. Nun möchte ich den genauen Wert für z=0,772 berechnen. Wie macht man sowas?

LG Rocky1994



        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Fr 27.10.2017
Autor: Al-Chwarizmi


> Moin,
>  
> schaut man sich die Standardnormalverteilungstabelle an
> bekomme ich für den Wert 0,77 = 0,77935 und für 0,78 =
> 0,7823. Nun möchte ich den genauen Wert für z=0,772
> berechnen. Wie macht man sowas?
>  
> LG Rocky1994


Hallo Rocky,

das macht man so, wie wir das früher (in der Zeit vor dem
Taschenrechner) z.B. in der Logarithmentafel ständig machen
mussten:  mit linearer Interpolation.

Bekannt sind  f(0.770)= 0.77935 und  f(0.780)= 0.78230.

Dann ist

f(0.772) ≈  f(0.770) + $ [mm] \frac{2}{10}$ [/mm] * (f(0.780)-f(0.770))

= 0.77935 + 0.2 * 0.00295 ≈  0.77935 + 0.00059 = 0.77994

LG ,   Al-Chw.

Bezug
                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Fr 27.10.2017
Autor: Rocky1994

Moin,

Danke für deine schnelle Antwort. Wie bist du auf 2/10 gekommen?

LG Rocky1994

Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Fr 27.10.2017
Autor: abakus

Wenn du den "Weg" von 0,77 zu 0,78 zurücklegst, kommst du nach 2/10 dieses Weges zur Zahl 0,772.


PS: "Nun möchte ich den genauen Wert für z=0,772 berechnen."
Damit bekommst immer noch nicht den "genauen" Wert, sondern einen relativ genauen Näherungswert.
Noch genauer wird dieser Näherungswert, wenn du
[mm] $\bruch{1}{\sqrt{2\pi}}e^{-x^2}$ [/mm] numerisch in den Grenzen von [mm] $-\infty$ [/mm] bis 0,772 mit sehr kleiner Schrittweite integrierst.

Bezug
                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Fr 27.10.2017
Autor: Al-Chwarizmi


> Wenn du den "Weg" von 0,77 zu 0,78 zurücklegst, kommst du
> nach 2/10 dieses Weges zur Zahl 0,772.
>  
>
> PS: "Nun möchte ich den genauen Wert für z=0,772
> berechnen."
>  Damit bekommst immer noch nicht den "genauen" Wert,
> sondern einen relativ genauen Näherungswert.
>  Noch genauer wird dieser Näherungswert, wenn du
>  [mm]\bruch{1}{\sqrt{2\pi}}e^{-x^2}[/mm] numerisch in den Grenzen
> von [mm]-\infty[/mm] bis 0,772 mit sehr kleiner Schrittweite
> integrierst.


Hallo Abakus und Rocky,

eine numerische Integration von [mm] $\red{-\infty}$ [/mm] bis 0.772 mit sehr kleiner
Schrittweite dürfte schätzungsweise eine Ewigkeit dauern.
Und: übrigens muss im Integrand  $\ [mm] e^{-\frac{x^2}{2}}$ [/mm] stehen ...
Ich würde nur von x=0 an integrieren und die weiteren Eigen-
schaften der Funktion  [mm]x\,\mapsto\ \bruch{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}[/mm]  nutzen.

Übrigens habe ich nachgeprüft, wie genau der durch lineare
Interpolation ermittelte Näherungswert 0.77994  tatsächlich
ist. Alle angegebenen 5 Dezimalen sind korrekt. Mehr als
diese 5 Dezimalen kann man aus einer Interpolation mit
Werten aus einer 5-stelligen Tabelle ja auch nicht erwarten.


     $\ 0.5\ +\ [mm] \bruch{1}{\sqrt{2\pi}}*\integral_0^{0.772} e^{-\frac{x^2}{2}}\ [/mm] dx\ =\ 0.779942786.....$

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de