www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Normalverteilung
Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Abfüllgewicht eines Produktes
Status: (Frage) beantwortet Status 
Datum: 11:26 Di 08.01.2008
Autor: Amarradi

Aufgabe
Das Abfüllgewicht eines Produktes sei normalverteilt mit

[mm] \mu=1Kg [/mm]
[mm] \sigma=0,01Kg [/mm]

a) Wie groß ist der prozentuale Anteil der Ausschuß-Flaschen, bei denen die Füllmenge um mehr als 0,02Kg betragsmäßig vom Sollwert 1Kg abweicht.

b) Bei höchstens 3% der Flaschen soll die Füllmenge um mehr als x betragsmäßig vom Sollwert 1L abweichen. Berechenen Sie x.

Hallo zusammen,

ich habe diese Aufgabe in der Prüfung gefunden Analog zu dieser https://matheraum.de/read?i=346603

möchte sie aber trotzdem Posten und habe auch noch ein paar spezielle Fragen.

zu a)
X=Abfüllgewicht in Kg
X [mm] \approx N(\mu [/mm] , [mm] \sigma) [/mm]
N(1L, 0,01L)

P(0,98Kg [mm] \le [/mm] X [mm] \ge [/mm] 1,02Kg)
[mm] \Phi \left( \bruch{X- \mu}{\sigma} \right) [/mm]

[mm] \Phi \left( \bruch{1,02Kg-1Kg}{0,01Kg} \right) [/mm] - [mm] \Phi \left( \bruch{0,98Kg-1Kg}{0,01Kg} \right) [/mm]

gekürzt ergibt das

[mm] \Phi [/mm] (2) - [mm] \Phi(-2) [/mm]
aus dem Tipp von koepper weiß ich :)
[mm] 2*\Phi [/mm] (2)-1=2*0,977250-1=0,9545

[mm] \Phi(2) [/mm] aus der Tabelle abgelesen = 0,977250
[mm] \Phi(-2) [/mm] = [mm] 1-\Phi(2) [/mm] = 0,02275
0,977250-0,02275=0,9545 -> Das ist der Anteil der Flaschen bei denen die Füllmenge um weniger als 0,02L abweicht.
1-0,9545 = 0,0455 -> Das ist der Anteil der Flaschen bei denen die Füllmenge um mehr als 0,02L abweicht.

zu b)
x=a
P(1Kg-a<X [mm] \le [/mm] 1Kg+a)>0,97
kann ich an der Stelle auch gleich ansetzen

[mm] \Phi \left( \bruch{1Kg-a-1Kg}{0,01Kg} \right) [/mm] - [mm] \Phi \left( \bruch{1Kg+a-1Kg}{0,01Kg} \right)>0,97 [/mm]
;-)
[mm] 2\Phi \left( \bruch{a}{0,01Kg} \right)-1>0,97 [/mm]
[mm] \Phi \left( \bruch{a}{0,01Kg} \right)>0,985 [/mm]
aus Tabelle ablesen =0,985 = 2,17
a=0,0217Kg

Kann ich das so tun?
Jetzt mal eine Frage. Was rechne ich, wenn das wort betragsmäßig nicht da steht, sondern nur + oder - recht dann anzusetzen.

[mm] \Phi \left( \bruch{1,02Kg-1Kg}{0,01Kg} \right) [/mm] für +

und

[mm] \Phi \left( \bruch{0,98Kg-1Kg}{0,01Kg} \right) [/mm] für -

Viele Grüße

Marcus Radisch


        
Bezug
Normalverteilung: Symmetrie nutzen
Status: (Antwort) fertig Status 
Datum: 12:37 Di 08.01.2008
Autor: Infinit

Hallo Marcus,
so wie von Dir beschrieben, kannst Du durchaus vorgehen, wenn es um betragsmäßige Abweichungen vom Mittelwert geht. Die Normalverteilung hat nun mal die schöne Eigenschaft, dass sie zum Erwartungswert symmetrisch ist und weswegen sollte man das nicht ausnutzen.
Wo es um Abweichungen nach oben oder nach unten geht, musst Du die jeweils richtige Grenze einsetzen.
Viele Grüße,
Infinit

Bezug
                
Bezug
Normalverteilung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Mi 09.01.2008
Autor: Amarradi

hallo Infinit,

recht Herzlichen Dank für deine Antwort, ich glaube zwar kaum, dass es eine Aufgabe geben wird wo es nur nach oben bzw. nach unten geht, aber mein weiß ja nie ist schließlich das Jahr der Mathematik :-)

Viele Grüße

Marcus Radisch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de