www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - Normalverteilung
Normalverteilung < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:25 Mo 18.01.2010
Autor: blackkilla

Aufgabe lautet:
Die Resultate einer Prüfung seien normalverteilt. Der Mittelwert beträgt 64 Punkte, die Standardabweichung s=12

Im Punkteintervall [22;z] sollen sich 95% der Prüfenden befinden. Bestimmen Sie die Punktzahl z.

Meine bisherigen Schritte waren:

(22-64)/12=-3,5 ---> Was ist diese -3,5 überhaupt?

Nun muss man irgendwie von -3,5 zu x integrieren.

        
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Mo 18.01.2010
Autor: blackkilla

eine 2.Teilaufgabe zu der genannten war:
Bestimmen Sie das Intervall (symmetrisch um den Mittelwert), wo 95% der Punktzahlen liegen.
Ich hab hier für n bei 95% -2 und 2 gewählt. Aber das war vor einiger Zeit. Weiss nicht mehr wie ich diese n gewählt habe. Könnt ihr mir da helfen?

Bezug
                
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Di 19.01.2010
Autor: Blech

Hi,

> eine 2.Teilaufgabe zu der genannten war:
>  Bestimmen Sie das Intervall (symmetrisch um den
> Mittelwert), wo 95% der Punktzahlen liegen.
> Ich hab hier für n bei 95% -2 und 2 gewählt. Aber das war
> vor einiger Zeit. Weiss nicht mehr wie ich diese n gewählt
> habe. Könnt ihr mir da helfen?

[mm] $\int_{-z}^z \phi(x)\ dx\overset{!}{=}0.95$ [/mm]

Das kannst Du nach z auflösen, weil [mm] $\Phi(x)$ [/mm] punktsymmetrisch ist, d.h.

[mm] $\Phi(-z)=\ldots$ [/mm]

ciao
Stefan

Bezug
                        
Bezug
Normalverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:40 Di 19.01.2010
Autor: blackkilla

Was ist dieses Zeichen überhaupt(dieser Kreis). Und wie kann ich so z rausfinden?

Bezug
                                
Bezug
Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 21.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Di 19.01.2010
Autor: Blech


> Aufgabe lautet:
>  Die Resultate einer Prüfung seien normalverteilt. Der
> Mittelwert beträgt 64 Punkte, die Standardabweichung s=12
>  
> Im Punkteintervall [22;z] sollen sich 95% der Prüfenden
> befinden. Bestimmen Sie die Punktzahl z.
>
> Meine bisherigen Schritte waren:
>  

Wenn X normalverteilt ist mit Mittelwert [mm] $\mu$ [/mm] (=64) und Varianz [mm] $s^2$ ($=12^2=144$), [/mm]

dann gilt für [mm] $Y:=\frac{X-\mu}{s}$: [/mm]

[mm] $E(Y)=E\left(\frac{X-\mu}{s}\right)=\frac1{s}\, E(X-\mu) [/mm] = [mm] \frac1{s} [/mm] (E(X) [mm] -\mu) =\frac1{s}(\mu -\mu)=0$ [/mm]

[mm] $Var(Y)=Var\left(\frac{X-\mu}{s}\right) [/mm] = [mm] \frac{1}{s^2}\, [/mm] Var(X [mm] -\mu) [/mm] = [mm] \frac1{s^2}\, [/mm] Var(X) = 1$

(Die Rechenregeln für Erwartungswert und Varianz solltet Ihr gehabt haben, wenn nicht, nimm's zur Kenntnis)

Das ganze ist immer noch normalverteilt. Weil die Normalverteilung durch Erwartungswert und Varianz vollständig bestimmt wird, ist Y also standardnormalverteilt.

Damit zu Deiner Frage:

> (22-64)/12=-3,5 ---> Was ist diese -3,5 überhaupt?

-3,5 ist der Wert der Standardnormalverteilung, der mit der gleichen Wahrscheinlichkeit auftaucht wie 22 bei Deiner Normalverteilung mit Mittelwert 64 und Standardabweichung 12.

  

> Nun muss man irgendwie von -3,5 zu z integrieren.

Du kannst Die Dichte der Normalverteilung [mm] ($\varphi(x)$) [/mm] nicht symbolisch integrieren. Deswegen brauchst Du den korrespondierenden Wert der Standardnormalverteilung, weil Du für die Stammfunktion der Dichte der Standardnormalverteilung [mm] $\Phi(x)$ [/mm] numerische Näherungswerte hast.

[mm] $\int_{-3.5}^z \varphi(x)\ [/mm] dx = [mm] \Phi(z)-\Phi(-3.5) \overset{!}{=}0.95$ [/mm]

Das jetzt nach z auflösen und in den Tabellen für [mm] $\Phi^{-1}(x)$ [/mm] nachschlagen.

ciao
Stefan


Bezug
                
Bezug
Normalverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:55 Di 19.01.2010
Autor: blackkilla

Ist der Erwartungswert immer 0 bei der Normalverteilung. Also ich habe das noch ein bisschen anders berechnet. Anstatt bei der Integration z zu nehmen habe ich x genommen. Dabei kam 1,65 raus.

Diese habe ich dann bei [mm] Y=((x\mu)/s) [/mm] eingesetzt.

1,65=((z-64)/12)

Dabei kam als z=83,8 raus, was die Lösung ist.

Bezug
                        
Bezug
Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 21.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de