www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Normalverteilung
Normalverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Aufgabe1 Verständnis
Status: (Frage) überfällig Status 
Datum: 21:43 Mi 17.11.2010
Autor: Smalldriver

Aufgabe
Aufgabe: Wie genial sind wir eigentlich? Die Intelligenz ist unter deutschen Schülern normalverteilt mit µ = 100. Die 2 % der Schüler IQ > 130 gelten als Genie. Nehmen wir an, dass die 35 % der Schüler, die pro Jahrgang Abitur machen, auch die intelligentesten sind und dass die 40 % unter den Abiturienten, die Mathe - LK Abitur machen, wiederum darunter die Intelligentesten sind. In welchem Beriech liegt also unser IQ?

Also ich habe schon mit der Lösung der Aufgabe zum Teil begonnen aber ich bleibe an einer Stelle hängen:

[mm] \mu [/mm] = 100 (Erwartungswert); P(x>130) = 2% = 0,02

1 - [mm] \phi \left( \bruch{130 - 100}{sigma} \right) [/mm] = 0,02


[mm] \gdw \phi \left( \bruch{30}{sigma} \right) [/mm] = 0,98

[mm] \gdw \left( \bruch{30}{sigma} \right) [/mm] = 2.06 (Aus Tabelle für Gaußsche Summenfunktion)

[mm] \gdw [/mm] 14,56 [mm] \approx [/mm] sigma

Da ich jetzt sigma habe, kann ich ja für [mm] \phi \left( \bruch{a - 100}{14,56} \right) [/mm] = 0.35 einsetzen und dann nach a auflösen um den IQ für den Anteil für 35% auflösen? Also: Ist das richtig
1 - [mm] \phi \left( \bruch{a - 100}{14,63} \right) [/mm] = 0,35
oder
[mm] \phi \left( \bruch{a - 100}{14,63} \right) [/mm] = 0,35 ???
Und gehört der Teil von den Schülern mit 40% zu den 35% Schülern? Wenn ja, wie berechnet man das dann?

Ich habe für 1 - [mm] \phi [/mm] = 103,77 raus
und für [mm] \phi [/mm] = 109,32

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke schonmal im Vorraush ;).

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mi 17.11.2010
Autor: abakus


> Aufgabe: Wie genial sind wir eigentlich? Die Intelligenz
> ist unter deutschen Schülern normalverteilt mit µ = 100.
> Die 2 % der Schüler IQ > 130 gelten als Genie. Nehmen wir
> an, dass die 35 % der Schüler, die pro Jahrgang Abitur
> machen, auch die intelligentesten sind und dass die 40 %
> unter den Abiturienten, die Mathe - LK Abitur machen,
> wiederum darunter die Intelligentesten sind. In welchem
> Beriech liegt also unser IQ?

Möglichweise in keinem allzu hohen, wenn wir sofort mit den schlimmsten Formeln draufhauen.
40% von 35% sind 40/100 von 35/100, also 1400/10000. Das sind 14% von allen, der Rest sind 86% von allen.
Gruß Abakus

>  Also ich habe schon mit der Lösung der Aufgabe zum Teil
> begonnen aber ich bleibe an einer Stelle hängen:
>  
> [mm]\mu[/mm] = 100 (Erwartungswert); P(x>130) = 2% = 0,02
>  
> 1 - [mm]\phi \left( \bruch{130 - 100}{sigma} \right)[/mm] = 0,02
>  
>
> [mm]\gdw \phi \left( \bruch{30}{sigma} \right)[/mm] = 0,98
>  
> [mm]\gdw \left( \bruch{30}{sigma} \right)[/mm] = 2.06 (Aus Tabelle
> für Gaußsche Summenfunktion)
>  
> [mm]\gdw[/mm] 14,56 [mm]\approx[/mm] sigma
>  
> Da ich jetzt sigma habe, kann ich ja für [mm]\phi \left( \bruch{a - 100}{14,56} \right)[/mm]
> = 0.35 einsetzen und dann nach a auflösen um den IQ für
> den Anteil für 35% auflösen? Also: Ist das richtig
>  1 - [mm]\phi \left( \bruch{a - 100}{14,63} \right)[/mm] = 0,35
>  oder
>  [mm]\phi \left( \bruch{a - 100}{14,63} \right)[/mm] = 0,35 ???
>  Und gehört der Teil von den Schülern mit 40% zu den 35%
> Schülern? Wenn ja, wie berechnet man das dann?
>  
> Ich habe für 1 - [mm]\phi[/mm] = 103,77 raus
>  und für [mm]\phi[/mm] = 109,32
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Danke schonmal im Vorraush ;).


Bezug
                
Bezug
Normalverteilung: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:23 Mi 17.11.2010
Autor: Smalldriver

Danke!!!

Jetzt bin ich schon einen Schritt weiter.

Bezug
        
Bezug
Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 So 21.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de