www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Normalverteilung
Normalverteilung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mo 30.01.2012
Autor: piccolo1986

Hey,
ich möchte ne Wahrscheinlichkeit ausrechnen, mach aber irgendwo nen Fehler, den ich nicht sehe.
Also gegeben ist ne Normalverteilte Zufallsvariable X mit [mm] \mu=11 [/mm] und [mm] \sigma^2=1,3 [/mm] und es ist P(X>12). Dann gilt doch:

[mm] P(X>12)=1-P(X\le 12)=1-\integral_{-\infty}^{12}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx} [/mm]

Jetzt substituiere ich: [mm] a=x-\mu, [/mm] sodass:
[mm] P(X>12)=1-\integral_{-\infty}^{1}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da} [/mm]
[mm] =1-\frac{1}{\sqrt{2\pi\sigma^2}}(-\frac{\sigma^2}{a}\exp(-\frac{a^2}{2\sigma^2})) |_{-\infty}^{1} [/mm]
[mm] =1+\frac{1}{\sqrt{2\pi\sigma^2}}\frac{\sigma^2}{1}\exp(-\frac{1}{2\sigma^2}) [/mm]   >1

Sieht jemand den Fehler, denn das Ergebnis darf ja nicht größer als 1 sein?

mfg
piccolo

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mo 30.01.2012
Autor: luis52


>  
> Jetzt substituiere ich: [mm]a=x-\mu,[/mm] sodass:
>  
> [mm]P(X>12)=1-\integral_{-\infty}^{1}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da}[/mm]
>  


M.E. heisst es

[mm]P(X>12)=1-\integral_{-\infty}^{1\red{-\mu}}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da[/mm]

vg Luis




Bezug
                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Di 31.01.2012
Autor: piccolo1986

Hallo,
> M.E. heisst es
>  
> [mm]P(X>12)=1-\integral_{-\infty}^{1\red{-\mu}}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da[/mm]
>  
> vg Luis

Ich hatte bei den Grenzen [mm] \mu=11 [/mm] gesetzt, von daher hatte ich schon [mm] 12-\mu=1 [/mm] erhalten.

mfg piccolo


Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 31.01.2012
Autor: Gonozal_IX

Hiho,

wie ullim bereits schrieb, gibt es keine analytische Lösung für die Dichte der Normalverteilung.
Aus diesem Grund wirst du die Verteilung einer normalverteilten Zufallsvariable nie explizit berechnen können, sondern benötigst dafür immer eine Tabelle für die Werte einer Normalverteilung, an welcher du die Werte ablesen kannst.

MFG,
Gono.

Bezug
                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Di 31.01.2012
Autor: piccolo1986

Ahh, ok, nu hab ichs raus, transformiere das erst auf Standardnormalverteilung und bekomme dann den Wert aus der entsprechenden Tabelle:-)

danke

mfg piccolo

Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Di 31.01.2012
Autor: ullim

Hi,


> Jetzt substituiere ich: [mm]a=x-\mu,[/mm] sodass:
>  
> [mm]P(X>12)=1-\integral_{-\infty}^{1}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{a^2}{2\sigma^2}) da}[/mm]
>  
> [mm]=1-\frac{1}{\sqrt{2\pi\sigma^2}}(-\frac{\sigma^2}{a}\exp(-\frac{a^2}{2\sigma^2})) |_{-\infty}^{1}[/mm]


[mm] \left(-\frac{\sigma^2}{a}\exp(-\frac{a^2}{2\sigma^2}\right) [/mm] ist keine Stammfunktion von [mm] \exp\left(-\frac{a^2}{2\sigma^2}\right) [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de