www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Normalverteilung
Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:55 Mi 29.02.2012
Autor: Ztirom

Aufgabe
Die Behandlung mit einem Medikament führt in 60% aller Fälle zum Erfolg. In einem Krankenhaus werden in einem Jahr 1000 Patienten mit diesem Medikament behandelt.
Berechne die Wahrscheinlichkeit, dass.

a) mindestens 580
b) höchstens 260
c) zwischen 580 und 620 Patienten geheilt werden.
d) In welchem um den Erwartungswert symmetrischen Intervall liegt die Anzahl der mit diesem Medikament erfolgreich behandelten Patienten mit mindestens 99% Wahrscheinlichkeit?
e) Eine Maschine füllt das Medikament mit einer Standardabweichung von 30mg ab, sodass die Füllmenge normalverteilt sind. Auf der Medikamentenverpackung steht ein Füllgewicht von 1000mg. Auf welchen Mittelwert muss die Maschine eingestellt werden, damit höchstens 3% der Packungen untergewichtig sind?

Hallo! Ich habe diese Frage noch in keinem anderen Forum gestellt.

Also als erstes brauche ich den Erwartungswert. Da man 60% Heilung erwarten kann liegt dieser bei 600 Personen. Die Standardabweichung ist [mm] \wurzel{1000*0,6*0,4} [/mm]

Daher folgt bei a)

P(X [mm] \ge [/mm] 580)

Daraus folgt: 1- [mm] \bruch{580-600}{15,49} [/mm] = -1,29

Jetzt rechne ich 1-(-1,29)= 2,29. Nun schaue ich in meiner Liste für Phi von Z nach und da steht: 0,9890! (Lt. Lösung sollten es 90,15% sein)

Was mir als erstes in den Sinn kam war das man 1-1,29 rechnet, daher 0,29. Wieder schaue ich in der Liste und auch dieses mal kommt nur 0,6141 heraus?

Kann mir jemand sagen wo sich mein fehler versteckt hat?

In meiner Liste steht 0,9015 bei 1,29!



        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 29.02.2012
Autor: Gonozal_IX

Hiho,

> Daher folgt bei a)
>  
> P(X [mm]\ge[/mm] 580)

[ok]
  

> Daraus folgt: 1- [mm]\bruch{580-600}{15,49}[/mm] = -1,29
>  
> Jetzt rechne ich 1-(-1,29)= 2,29. Nun schaue ich in meiner
> Liste für Phi von Z nach und da steht: 0,9890! (Lt.
> Lösung sollten es 90,15% sein)

Typischer Fall von: schlampig aufgeschrieben!

Schreib es sauber hin und dir kommt dein Fehler von ganz alleine in den Sinn.
Weil ich nett bin, mach ich mal den Anfang:

$P(X [mm] \ge [/mm] 580) = 1 - P(X < 580) = 1 - P(X [mm] \le [/mm] 579) = [mm] \ldots$ [/mm]

MFG,
Gono.

Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Mi 29.02.2012
Autor: Ztirom

Oh ok! Hab den fehler gefundn und bin jetzt auf das Richtige ergebnis gekommen! Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de