Normalverteilung Prior < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir nehmen an, dass wir eine Normalverteilung haben: [mm] \mathcal{N}(\bold{x}|\bold{w},\bold{\Sigma}_1). [/mm] Der Parameter [mm] \bold{w} [/mm] ist wiederrum normalverteilt mit [mm] \mathcal{N}(\bold{w}|\bold{\mu},\bold{\Sigma}_2).
[/mm]
Ziel ist es nun, den Vektor "rauszuintegrieren": [mm] \int \! \mathcal{N}(\bold{x}|\bold{w},\bold{\Sigma}_1)\mathcal{N}(\bold{w}|\bold{\mu},\bold{\Sigma}_2) \, \mathrm{d}\bold{w} [/mm] |
Meinem Verständnis nach sollte bei der obigen Aufgabe folgendes Ergebnis herauskommen:
[mm] \int \! \mathcal{N}(\bold{x}|\bold{w},\bold{\Sigma}_1)\mathcal{N}(\bold{w}|\bold{\mu},\bold{\Sigma}_2) \, \mathrm{d}\bold{w} [/mm] = [mm] \mathcal{N}(\bold{x}|\bold{\mu},\bold{\Sigma}_1 [/mm] + [mm] \bold{\Sigma}_2) [/mm] = [mm] \frac{1}{\sqrt{(2\pi)^D\left|\bold{\Sigma}_1 + \bold{\Sigma}_2 \right|}}\exp\left(-\frac{1}{2}(\bold{x}-\bold{\mu})^T(\bold{\Sigma}_1 + \bold{\Sigma}_2)^{-1}(\bold{x}-\bold{\mu})\right)
[/mm]
Leider komme ich nicht zu diesem Ergebnis. Ich habe auch nicht wirklich einen Rechenweg parat. Mein Startpunkt war die ausgeschriebene Gleichung:
[mm] \int \! \mathcal{N}(\bold{x}|\bold{w},\bold{\Sigma}_1)\mathcal{N}(\bold{w}|\bold{\mu},\bold{\Sigma}_2) \, \mathrm{d}\bold{w} [/mm] = [mm] \int \! \frac{1}{\sqrt{(2\pi)^D\left|\bold{\Sigma}_1\right|}}\exp\left(-\frac{1}{2}(\bold{x}-\bold{w})^T\bold{\Sigma}_1^{-1}(\bold{x}-\bold{w})\right)\frac{1}{\sqrt{(2\pi)^D\left|\bold{\Sigma}_2\right|}}\exp\left(-\frac{1}{2}(\bold{w}-\bold{\mu})^T\bold{\Sigma}_2^{-1}(\bold{w}-\bold{\mu})\right)\mathrm{d}\bold{w}
[/mm]
Diese habe ich jetzt versucht weiter zu vereinfachen, ich komme aber nicht zu dem Teil an dem ich das Integral durch einen einfachen Ausdruck ersetzen kann. Vielleicht hat ja jemand eine Idee wie ich weiterkomme (oder was generell falsch ist)?!
|
|
|
|
Ich bin jetzt weitergekommen und muss noch zwei Sachen beweisen, damit ich auf das richtige Ergebnis komme.
Zuerst muss ich folgendes zeigen: [mm] \left| \bold{\Sigma}_1^{-1} + \bold{\Sigma}_2^{-1} \right| \left| \bold{\Sigma}_1 \right| \left| \bold{\Sigma}_2 \right| [/mm] = [mm] \left| \bold{\Sigma}_1 + \bold{\Sigma}_2 \right|
[/mm]
Ich habe keine Ahnung wie ich hier vorgehen soll. Ich habe nach der Determinante einer Summe von zwei Matrizen gesucht, aber nicht wirklich etwas gefunden, weil die obige Gleichung wohl nicht allgemein gültig ist. Ich habe es in Matlab mal mit ein paar beispielhaften Matrizen versucht, da stimmte die Gleichung immer. Hat jemand eine Idee?
|
|
|
|
|
Ok ich glaube der Beweis ist relativ einfach:
= [mm] \left| \bold{\Sigma}_1 \right| \left| \bold{\Sigma}_1^{-1} + \bold{\Sigma}_2^{-1} \right| \left| \bold{\Sigma}_2 \right| [/mm] = [mm] \left| \bold{\Sigma}_1 \bold{\Sigma}_1^{-1} + \bold{\Sigma}_1\bold{\Sigma}_2^{-1} \right| \left| \bold{\Sigma}_2 \right| [/mm] = [mm] \left| \bold{\Sigma}_1 \bold{\Sigma}_1^{-1} \bold{\Sigma}_2 + \bold{\Sigma}_1\bold{\Sigma}_2^{-1} \bold{\Sigma}_2 \right| [/mm] = [mm] \left| \bold{\Sigma}_2 +\bold{\Sigma}_1 \right|
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 Fr 25.07.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Sa 19.07.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|