www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Normalverteilung usw
Normalverteilung usw < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung usw: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Di 06.05.2008
Autor: mickeymouse

Aufgabe
einmusikladen bezieht seine ware zu gleichen teilen von den großhändlern A und B. A  liefert  ausnahmslos originalware. in jeder lieferung des großhändlers B befinden sich 15 % willkürlichen eingestreute raubkopien, die nur dadurch erkannt werden können, dass diesen CDs der Kopierschutz fehlt.
a) wie viele zufällig aus dem musikladen ausgewählte CDs muss man mindestens überprüfen, um mit einer wahrscheinlichkeit von mehr als 90 % mindestens eine raubkopie zu entdecken? rechnen Sie wie bei "ziehen mit zurücklegen".
b) eine lieferung von 500 CDs von großhändler B wird untersucht. bestimmen Sie den kleinstmöglichen bereich symmetrisch zum erwartungswert, in dem die zahl der raubkopien mit einer wahrscheinlichkeit von mindestens 80 % liegt. (näherung mit normalverteilung)

die aufgaben sind aus der abiturprüfung 2005 in bayern, leider habe ich leine lösungen dazu...
zu a) was ist gemeint mit "rechnen sie wie bei "ziehen mit zurücklegen"?
ich hab halt so gerechnet, dass die wahrscheinlichkeit für eine raubkopie 0,5 * 0,15 ist, da ja alle CDs überprüft werden und A und B zu gleichen teilen liefern, also hab ich 15 % aus 50 %, also 7,5 % für eine raubkopie!
und dann hab ich mit dem gegenereignis weitergerechnet, also [mm] 1-P(0,925)^{n} [/mm] > 0,9
dann kommt bei mir raus: n mindestens 30!
stimmt das? hab ja leider keine lösung....  und mit zurücklegen hab ich auch nichts gerechnet...

zu b) der erwartungswert müsste doch 0,15 * 500 = 75 sein, oder?
und für standardabweichung hab ich die wurzel aus 63,75.
und gesucht ist ein bereich symmetrisch zu [mm] \mu [/mm] mit der wahrscheinlichkeit von mindestens 80% ...
also 75 +/- c
dann hätt ich halt 75 + c als obere grenze und 75 - c als untere grenze. in die normalverteilung eingesetzt gibt das ja dann
[mm] \Phi (\bruch{c+0,5}{\wurzel{63,75}}) [/mm] - [mm] \Phi \bruch{-c}{\wurzel{63,75}} \le [/mm] 0,8
kann man dann die stetigkeitskorrektur weglassen, damit mans einfacher rechnen kann?
weil dann hätt ich ja 2 [mm] \Phi(\bruch{c}{\wurzel{63,75}}) [/mm] - 1 ,oder?
und dann noch mit der quantile weiterrechnen!
wenn ich dann c hab, muss ich halt als bereich [75-c; 75+c] angeben, oder?
stimmt das alles? kann ich die stetigkeitskorrektur hier einfach weglassen?

danke...:)

        
Bezug
Normalverteilung usw: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Di 06.05.2008
Autor: Martinius

Hallo,

> einmusikladen bezieht seine ware zu gleichen teilen von den
> großhändlern A und B. A  liefert  ausnahmslos originalware.
> in jeder lieferung des großhändlers B befinden sich 15 %
> willkürlichen eingestreute raubkopien, die nur dadurch
> erkannt werden können, dass diesen CDs der Kopierschutz
> fehlt.
>  a) wie viele zufällig aus dem musikladen ausgewählte CDs
> muss man mindestens überprüfen, um mit einer
> wahrscheinlichkeit von mehr als 90 % mindestens eine
> raubkopie zu entdecken? rechnen Sie wie bei "ziehen mit
> zurücklegen".
>  b) eine lieferung von 500 CDs von großhändler B wird
> untersucht. bestimmen Sie den kleinstmöglichen bereich
> symmetrisch zum erwartungswert, in dem die zahl der
> raubkopien mit einer wahrscheinlichkeit von mindestens 80 %
> liegt. (näherung mit normalverteilung)

>  die aufgaben sind aus der abiturprüfung 2005 in bayern,
> leider habe ich leine lösungen dazu...
>  zu a) was ist gemeint mit "rechnen sie wie bei "ziehen mit
> zurücklegen"?

Ich nehme an, es soll ein Hinweis darauf sein die Binomialverteilung anstatt der Hypergeometrischen Verteilung (Ziehen ohne Zurücklegen) zu verwenden.

>  ich hab halt so gerechnet, dass die wahrscheinlichkeit für
> eine raubkopie 0,5 * 0,15 ist, da ja alle CDs überprüft
> werden und A und B zu gleichen teilen liefern, also hab ich
> 15 % aus 50 %, also 7,5 % für eine raubkopie!
>  und dann hab ich mit dem gegenereignis weitergerechnet,
> also [mm]1-P(0,925)^{n}[/mm] > 0,9
>  dann kommt bei mir raus: n mindestens 30!

Könnte es sein dass eine Angabe in der Aufgabenstellung fehlt? Man bräuchte für die Binomialverteilung die Stückzahl der im Musikladen vorhandenen CD's. Poste doch einmal deine Rechnung.

>  stimmt das? hab ja leider keine lösung....  und mit
> zurücklegen hab ich auch nichts gerechnet...
>  
> zu b) der erwartungswert müsste doch 0,15 * 500 = 75 sein,
> oder?
>  und für standardabweichung hab ich die wurzel aus 63,75.
>  und gesucht ist ein bereich symmetrisch zu [mm]\mu[/mm] mit der
> wahrscheinlichkeit von mindestens 80% ...
>  also 75 +/- c
>  dann hätt ich halt 75 + c als obere grenze und 75 - c als
> untere grenze. in die normalverteilung eingesetzt gibt das
> ja dann
>  [mm]\Phi (\bruch{c+0,5}{\wurzel{63,75}})[/mm] - [mm]\Phi \bruch{-c}{\wurzel{63,75}} \le[/mm]
> 0,8


Du meinst:

[mm]\Phi \left(\bruch{c-75+0,5}{\wurzel{63,75}}\right)[/mm] - [mm]\Phi \left(\bruch{75-c-0,5}{\wurzel{63,75}}\right) \ge[/mm]  0,8




>  kann man dann die stetigkeitskorrektur weglassen, damit
> mans einfacher rechnen kann?

Ich meine nicht, da man ja eine diskrete Verteilung durch eine stetige Verteilung annähert.


> weil dann hätt ich ja 2 [mm]\Phi(\bruch{c}{\wurzel{63,75}})[/mm] - 1
> ,oder?

2 [mm]\Phi(\bruch{c+0,5-75}{\wurzel{63,75}})-1[/mm] [mm] \ge [/mm] 0,8



>  und dann noch mit der quantile weiterrechnen!

Ja.

>  wenn ich dann c hab, muss ich halt als bereich [75-c;
> 75+c] angeben, oder?

Ja. Ich hätte 75 [mm] \pm [/mm] 9,7132.

>  stimmt das alles? kann ich die stetigkeitskorrektur hier
> einfach weglassen?

Bei dieser Angabe schon; Du brauchst sie ja nur, um die Normalverteilung zum Rechnen zu verwenden zu können.

> danke...:)


LG, Martinius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de