www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Normalverteilungsapproximation
Normalverteilungsapproximation < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilungsapproximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Di 15.11.2005
Autor: samtex

Hi!

Es geht um folgende Aufgabe:
In der Chipproduktion sind 5% fehlerhaft. Man berechne die Wahrscheinlichkeit, dass von 1000 produzierten Stück, zwischen 100 und 200 fehlerhaft sind durch eine Normalverteilungsapproximation.

Ich hab mir mal E(x)=n*p=50 und Var(x)=n*p*q=47,5 ausgerechnet.
Wenn ich aber nun versuche die Normalverteilung zu standardisieren, bekomme ich Werte, die ich in der Tabelle nicht nachschlagen kann.
Mein Weg:
P(100<X<200)=PHI[(200-50)/sqrt(47,5)]-PHI[(200-50)/sqrt(47,5)]
P(100<X<200)=PHI(21,8)-PHI(7,3)
Ich kann jedoch die Werte 21,8 und 7,3 nicht nachschlagen...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalverteilungsapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 16.11.2005
Autor: zur

Hallo samtex

Wenn ich das richtig sehe, ist das, was du da mit PHI bezeichnest die Verteilungsfunktion der Normalverteilung und die lässt sich berechnen mit PHI(u)= [mm] \bruch{1}{\wurzel{2*\pi}}* \integral_{- \infty}^{u} [/mm] { [mm] e^{-\bruch{z^{2}}{2}}dz} [/mm] mit [mm] u=\bruch{x-E(x)}{Var(x)}. [/mm]

Ich hoffe dir damit geholfen zu haben.


Gruss zur



Bezug
        
Bezug
Normalverteilungsapproximation: Kein Wunder!
Status: (Antwort) fertig Status 
Datum: 17:06 Fr 18.11.2005
Autor: Zwerglein

Hi, samtex,

> Es geht um folgende Aufgabe:
>  In der Chipproduktion sind 5% fehlerhaft. Man berechne die
> Wahrscheinlichkeit, dass von 1000 produzierten Stück,
> zwischen 100 und 200 fehlerhaft sind durch eine
> Normalverteilungsapproximation.
>  
> Ich hab mir mal E(x)=n*p=50 und Var(x)=n*p*q=47,5
> ausgerechnet.

Richtig!

>  Wenn ich aber nun versuche die Normalverteilung zu
> standardisieren, bekomme ich Werte, die ich in der Tabelle
> nicht nachschlagen kann.
>  Mein Weg:
>  
> P(100<X<200)=PHI[(200-50)/sqrt(47,5)]-PHI[(200-50)/sqrt(47,5)]
>  P(100<X<200)=PHI(21,8)-PHI(7,3)
>  Ich kann jedoch die Werte 21,8 und 7,3 nicht
> nachschlagen...

Weil alles über 4,76 praktisch =0 ist!
Ist ja auch logisch: Dein Intervall ist so seltsam gegeben, dass sein linker Rand (100) bereits mehr als das 7-Fache der Standardabweichung vom Erwartungswert (50) wegliegt.

Nun gibt's 2 Möglichkeiten:
(1) Das war eine "Fangfrage".
(2) Der gegebene Prozentsatz war nicht 5% sondern 15% (was ich bei der Vorgabe des Intervalles fast vermute!).

mfG!
Zwerglein

Bezug
                
Bezug
Normalverteilungsapproximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Mo 21.11.2005
Autor: samtex

Also der gefragte Prozentsatz ist sicher 5%. Das ist übrigens der 2. Teil des Beispiels. Der 1. Teil lautet:
Man berechne die Wahrscheinlichkeit, das von 10 produzierten Stück 1 oder 2 fehlerhaft sind.
Das hab ich als Binomialverteilung angenommen und da kommt auch ein sinnvoller Wert heraus (ca. 38% glaub ich). Da es so aussieht als sollte man auf 2 verschiedene Arten ungefähr das gleiche Ergebnis bekommen, will ich mich noch nicht damit abfinden, dass das eine Fangfrage sein soll.

samtex

Bezug
                        
Bezug
Normalverteilungsapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Mo 21.11.2005
Autor: Zwerglein

Hi, samtex,


> Also der gefragte Prozentsatz ist sicher 5%. Das ist
> übrigens der 2. Teil des Beispiels. Der 1. Teil lautet:
> Man berechne die Wahrscheinlichkeit, das von 10
> produzierten Stück 1 oder 2 fehlerhaft sind.
> Das hab ich als Binomialverteilung angenommen und da kommt
> auch ein sinnvoller Wert heraus (ca. 38% glaub ich).

Sogar 39%! Hab' grade nachgeschaut!

> so aussieht als sollte man auf 2 verschiedene Arten
> ungefähr das gleiche Ergebnis bekommen, will ich mich noch
> nicht damit abfinden, dass das eine Fangfrage sein soll.

Na: Jetzt versteh' ich die Aufgabe!
Es ist eben grade NICHT so, dass zweimal fast das Gleiche rauskommt!
Hier wird begreiflich gemacht, dass man bei Binomialverteilungen nicht einfach mit 100 (oder sonstwas) multipliziert werden darf und am Ende (fast) das Gleiche rauskommt!

Also: Ergebnisse OK!
Einmal: 39%.
Dann: Praktisch 0%

mfG!
Zwerglein

Bezug
                                
Bezug
Normalverteilungsapproximation: Danke Zwerglein
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Di 22.11.2005
Autor: samtex

Hast mir sehr geholfen!

samtex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de