www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Normen
Normen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:04 Do 25.04.2013
Autor: Thomas_Aut

Aufgabe
Hallo ,

Ich habe folgende Aufgabenstellung:

a ) Für p [mm] \ge [/mm] 1 sei [mm] ||.||_{p}: \IR^{n} \to \IR [/mm] definiert durch:

[mm] ||(x_{j})_{j=1}^{n}||_{p} [/mm] := [mm] \wurzel[p]{\summe_{j=1}^{n}|x_{j}|^{p}} [/mm]

Man zeige dass [mm] ||.||_{p} [/mm] eine Norm ist.

b) Man Zeige , dass alle Normen [mm] ||.||_{p} [/mm] , p [mm] \in [/mm] [1, [mm] \infty) [/mm] auf [mm] \IR^{n} [/mm] äquivalent sind. Man zeige insbesondere dass [mm] (1\lep
[mm] ||x||_{\infty} \le ||x||_{q} \le ||x||_{p} \le n||x||_{\infty}. [/mm]

Also gut:
ad a)

Behauptung 1: [mm] ||(x_{j})_{j=1}^{n}||_{p} [/mm] := [mm] \wurzel[p]{\summe_{j=1}^{n}|x_{j}|^{p}} [/mm] ist eine Norm.
Beweis:

Bedingungen für eine Norm: X sei Vektorraum über [mm] \IR (\IC) [/mm]

1)[mm] ||x+y|| \le ||x|| + ||y|| x,y \in X [/mm]
2) [mm] ||ax|| = |a|.||x|| x \in X a \in \IR (\IC)[/mm]
3)[mm] ||x|| > 0 falls x \neq 0[/mm]

Ich prüfe die Bedingungen :

ad 3)  [mm] \wurzel[p]{\summe_{j=1}^{n}|x_{j}|^{p}} [/mm] > 0 für alle x [mm] \neq [/mm] 0 ist klar aufgrund des Betrags.
ad 2) zz : [mm] ||ax|| = |a|.||x|| x \in X a \in \IR (\IC)[/mm]

[mm] ||ax||_{p} = \wurzel[p]{\summe_{j=1}^{n}|ax_{j}|^{p}} = \wurzel[p]{\summe_{j=1}^{n}|a|^{p}|x_{j}|^{p}} = \wurzel[p]{|a|^{p}\summe_{j=1}^{n}|x_{j}|^{p}} = |a|.||x|| [/mm]

ad 1: zz. [mm] ||x+y|| \le ||x|| + ||y|| x,y \in X [/mm]

[mm] \summe_{i=1}|x_{j}+y_{y}|^{p} \le \summe_{i=1}|x_{j}||x_{j}+y_{y}|^{p-1} [/mm] + [mm] \summe_{i=1}|y_{j}||x_{j}+y_{y}|^{p-1} [/mm] lt. Hinweis.
Ich wende nun die Höldersche Ungl. an:

[mm] \le (\summe_{i=1}^{n}|x_{j}|^{p})*\summe_{i=1}^{n}(|x_{j}+y_{j}|^{(p-1)*q})^{\frac{1}{q}} [/mm] + [mm] (\summe_{i=1}^{n}|y_{j}|^{p})*\summe_{i=1}^{n}(|x_{j}+y_{j}|^{(p-1)*q})^{\frac{1}{q}}, [/mm] setze q = [mm] \frac{p}{p-1} [/mm] und erhalte nach umformen die gewünschte Aussage.

ad b)

Behauptung: Die Normen sind äquivalent:

Die Normen [mm] ||.||_{p}[/mm] und [mm] ||.||_{q}[/mm] heißen äquivalent [mm] \gdw[/mm]  [mm]a*||.||_{p} \le ||.||_{q} \le b*||.||_{p}[/mm] wobei a,b > 0.

Ich mache dies hier nur für : [mm]||.||_{\infty}[/mm] äquivalent zu [mm]||.||_{p}[/mm]

[mm][mm] ||(x_{j})_{j=1}^{n}||_{\infty}:=Max_{1\le j \le n} {|x_{j}|} [/mm]

[mm] Max_{1\le j \le n} {|x_{j}|} \le (\summe_{j=1}^{n}|x_{j}|^{p})^{\frac{1}{p}} \le (\summe_{j=1}^{n}Max(|x_{j}|^{p}))^{\frac{1}{p}} [/mm] = [mm]n*Max (|x_{j}|^{p})^{\frac{1}{p}} = n*Max|x_{j}| = n*||.||_{\infty} [/mm]

[mm] \Rightarrow[/mm]  [mm]a*||.||_{\infty}[/mm] [mm] \le[/mm]   [mm]||.||_{p}[/mm] [mm] \le[/mm] [mm] n*||.||_{\infty}[/mm]  , wobei a = 1.

Vorgehen um die Äquivalenz der anderen Normen zu zeigen wäre ähnlich.

Passt das im Großen und Ganzen?

Lg Thomas


        
Bezug
Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Do 25.04.2013
Autor: mathmetzsch

Hallo,

also deine Ausführungen zum Teil a) der Aufgabe sind m.E. korrekt.

Grüße, Daniel

Bezug
        
Bezug
Normen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 27.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de